Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
0e165c50
提交
0e165c50
authored
7月 31, 2022
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Created using Colaboratory
上级
685332ed
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
161 行增加
和
154 行删除
+161
-154
tutorial.ipynb
tutorial.ipynb
+161
-154
没有找到文件。
tutorial.ipynb
浏览文件 @
0e165c50
...
...
@@ -16,7 +16,7 @@
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"
572de771c7b34c1481def33bd5ed690d
": {
"
c79427d84662495db06b89a791d61f31
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
...
...
@@ -31,14 +31,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_
20c89dc0d82a4bdf8756bf5e34152292
",
"IPY_MODEL_
61026f684725441db2a640e531807675
",
"IPY_MODEL_
8d2e16d90e13449598d7b3fac75f78a3
"
"IPY_MODEL_
469c8e5ae4d64adea773341ec22d5851
",
"IPY_MODEL_
2435573a321341878622d79e1f48f3db
",
"IPY_MODEL_
a4dcb697b08b4b70ab3ef3ffa54c28e4
"
],
"layout": "IPY_MODEL_
a09d90f1bd374ece9a29bc6cfe07c072
"
"layout": "IPY_MODEL_
87495c10d22c4b82bd724a4d7c300df3
"
}
},
"
20c89dc0d82a4bdf8756bf5e34152292
": {
"
469c8e5ae4d64adea773341ec22d5851
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
...
...
@@ -53,13 +53,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
801e720897804703b4d32f99f84cc3b8
",
"layout": "IPY_MODEL_
098c321358c24cdbb50f6c0e6623bf6c
",
"placeholder": "",
"style": "IPY_MODEL_
c9fb2e268cc94d508d909b3b72ac9df
3",
"style": "IPY_MODEL_
20184030ca9d4aef9dac0a149b89e4d
3",
"value": "100%"
}
},
"
61026f684725441db2a640e531807675
": {
"
2435573a321341878622d79e1f48f3db
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
...
...
@@ -75,15 +75,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
bfbc16e88df24fae93e8c80538e78273
",
"layout": "IPY_MODEL_
790808c9b4fb448aa136cc1ade0f95b5
",
"max": 818322941,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_
d9ffa50bddb7455ca4d67ec220c4a10c
",
"style": "IPY_MODEL_
99b822fd56b749318b38d8ccbc4ac469
",
"value": 818322941
}
},
"
8d2e16d90e13449598d7b3fac75f78a3
": {
"
a4dcb697b08b4b70ab3ef3ffa54c28e4
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
...
...
@@ -98,13 +98,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
8be83ee30f804775aa55aeb021bf515b
",
"layout": "IPY_MODEL_
d542739146774953954e92db1666b951
",
"placeholder": "",
"style": "IPY_MODEL_
78e5b8dba72942bfacfee54ceec53784
",
"value": " 780M/780M [0
1:28<00:00, 9.08
MB/s]"
"style": "IPY_MODEL_
e11f3a2c51204778832631a5f150b21d
",
"value": " 780M/780M [0
2:31<00:00, 4.89
MB/s]"
}
},
"
a09d90f1bd374ece9a29bc6cfe07c072
": {
"
87495c10d22c4b82bd724a4d7c300df3
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -156,7 +156,7 @@
"width": null
}
},
"
801e720897804703b4d32f99f84cc3b8
": {
"
098c321358c24cdbb50f6c0e6623bf6c
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -208,7 +208,7 @@
"width": null
}
},
"
c9fb2e268cc94d508d909b3b72ac9df
3": {
"
20184030ca9d4aef9dac0a149b89e4d
3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -223,7 +223,7 @@
"description_width": ""
}
},
"
bfbc16e88df24fae93e8c80538e78273
": {
"
790808c9b4fb448aa136cc1ade0f95b5
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -275,7 +275,7 @@
"width": null
}
},
"
d9ffa50bddb7455ca4d67ec220c4a10c
": {
"
99b822fd56b749318b38d8ccbc4ac469
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -291,7 +291,7 @@
"description_width": ""
}
},
"
8be83ee30f804775aa55aeb021bf515b
": {
"
d542739146774953954e92db1666b951
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -343,7 +343,7 @@
"width": null
}
},
"
78e5b8dba72942bfacfee54ceec53784
": {
"
e11f3a2c51204778832631a5f150b21d
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -403,7 +403,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
4bf03330-c2e8-43ec-c5da-b7f5e0b2b123
"
"outputId": "
7728cbd8-6240-4814-e8fe-a223b9e57ed9
"
},
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
...
...
@@ -414,20 +414,20 @@
"import utils\n",
"display = utils.notebook_init() # checks"
],
"execution_count":
null
,
"execution_count":
1
,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"YOLOv5 🚀 v6.1-
257-g669f707 Python-3.7.13 torch-1.11
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
"YOLOv5 🚀 v6.1-
343-g685332e Python-3.7.13 torch-1.12
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Setup complete ✅ (8 CPUs, 51.0 GB RAM, 38.
8
/166.8 GB disk)\n"
"Setup complete ✅ (8 CPUs, 51.0 GB RAM, 38.
6
/166.8 GB disk)\n"
]
}
]
...
...
@@ -460,29 +460,29 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
1d1bb361-c8f3-4ddd-8a19-864bb993e7ac
"
"outputId": "
2d81665e-a0c4-489a-c92e-fe815223adfb
"
},
"source": [
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
"display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
"
#
display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
],
"execution_count":
null
,
"execution_count":
2
,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
"YOLOv5 🚀 v6.1-
257-g669f707 Python-3.7.13 torch-1.11
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"YOLOv5 🚀 v6.1-
343-g685332e Python-3.7.13 torch-1.12
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:0
0<00:00, 225
MB/s]\n",
"100% 14.1M/14.1M [00:0
2<00:00, 6.87
MB/s]\n",
"\n",
"Fusing layers... \n",
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.01
3
s)\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.01
5
s)\n",
"Speed: 0.
6ms pre-process, 14.1ms inference, 23.9
ms NMS per image at shape (1, 3, 640, 640)\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.01
4
s)\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.01
9
s)\n",
"Speed: 0.
5ms pre-process, 16.3ms inference, 22.1
ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
]
}
...
...
@@ -526,27 +526,27 @@
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"
572de771c7b34c1481def33bd5ed690d
",
"
20c89dc0d82a4bdf8756bf5e34152292
",
"
61026f684725441db2a640e531807675
",
"
8d2e16d90e13449598d7b3fac75f78a3
",
"
a09d90f1bd374ece9a29bc6cfe07c072
",
"
801e720897804703b4d32f99f84cc3b8
",
"
c9fb2e268cc94d508d909b3b72ac9df
3",
"
bfbc16e88df24fae93e8c80538e78273
",
"
d9ffa50bddb7455ca4d67ec220c4a10c
",
"
8be83ee30f804775aa55aeb021bf515b
",
"
78e5b8dba72942bfacfee54ceec53784
"
"
c79427d84662495db06b89a791d61f31
",
"
469c8e5ae4d64adea773341ec22d5851
",
"
2435573a321341878622d79e1f48f3db
",
"
a4dcb697b08b4b70ab3ef3ffa54c28e4
",
"
87495c10d22c4b82bd724a4d7c300df3
",
"
098c321358c24cdbb50f6c0e6623bf6c
",
"
20184030ca9d4aef9dac0a149b89e4d
3",
"
790808c9b4fb448aa136cc1ade0f95b5
",
"
99b822fd56b749318b38d8ccbc4ac469
",
"
d542739146774953954e92db1666b951
",
"
e11f3a2c51204778832631a5f150b21d
"
]
},
"outputId": "
47c358af-138d-42d9-ca89-4364283df9e
3"
"outputId": "
d880071b-84ce-4567-9e42-a3c3a78bff7
3"
},
"source": [
"# Download COCO val\n",
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
],
"execution_count":
null
,
"execution_count":
3
,
"outputs": [
{
"output_type": "display_data",
...
...
@@ -557,7 +557,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "
572de771c7b34c1481def33bd5ed690d
"
"model_id": "
c79427d84662495db06b89a791d61f31
"
}
},
"metadata": {}
...
...
@@ -571,53 +571,53 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
979fe4c2-a058-44de-b401-3cb67878a1b9
"
"outputId": "
da9456fa-6663-44a8-975b-c99e89d0eb06
"
},
"source": [
"# Run YOLOv5x on COCO val\n",
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
],
"execution_count":
null
,
"execution_count":
4
,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
"YOLOv5 🚀 v6.1-
257-g669f707 Python-3.7.13 torch-1.11
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"YOLOv5 🚀 v6.1-
343-g685332e Python-3.7.13 torch-1.12
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n",
"100% 166M/166M [00:
04<00:00, 39.4
MB/s]\n",
"100% 166M/166M [00:
16<00:00, 10.3
MB/s]\n",
"\n",
"Fusing layers... \n",
"YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n",
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
"100% 755k/755k [00:00<00:00,
47.9
MB/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00,
8742
.34it/s]\n",
"100% 755k/755k [00:00<00:00,
14.8
MB/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00,
11214
.34it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:
11<00:00, 2.21
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:
05<00:00, 2.39
it/s]\n",
" all 5000 36335 0.743 0.625 0.683 0.504\n",
"Speed: 0.1ms pre-process, 4.
9ms inference, 1.2
ms NMS per image at shape (32, 3, 640, 640)\n",
"Speed: 0.1ms pre-process, 4.
7ms inference, 1.1
ms NMS per image at shape (32, 3, 640, 640)\n",
"\n",
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
"loading annotations into memory...\n",
"Done (t=0.
42
s)\n",
"Done (t=0.
38
s)\n",
"creating index...\n",
"index created!\n",
"Loading and preparing results...\n",
"DONE (t=
4.91
s)\n",
"DONE (t=
5.39
s)\n",
"creating index...\n",
"index created!\n",
"Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n",
"DONE (t=7
7.89
s).\n",
"DONE (t=7
1.33
s).\n",
"Accumulating evaluation results...\n",
"DONE (t=1
5.36
s).\n",
"DONE (t=1
2.45
s).\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.340\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55
7
\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55
8
\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.651\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.631\n",
...
...
@@ -731,26 +731,31 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
be9424b5-34d6-4de0-e951-2c5ae334721e
"
"outputId": "
9fe5caba-6b0f-4b6e-93a8-4075dae0ee35
"
},
"source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
],
"execution_count":
null
,
"execution_count":
5
,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0m
up to date with https://github.com/ultralytics/yolov5 ✅
\n",
"YOLOv5 🚀 v6.1-
257-g669f707 Python-3.7.13 torch-1.11
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1,
seed=0,
local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0m
skipping check (Docker image), for updates see https://github.com/ultralytics/yolov5
\n",
"YOLOv5 🚀 v6.1-
343-g685332e Python-3.7.13 torch-1.12
.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
"\n",
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
"Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
"100% 6.66M/6.66M [00:00<00:00, 31.8MB/s]\n",
"Dataset download success ✅ (1.5s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
...
...
@@ -777,17 +782,18 @@
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
"Model summary: 270 layers, 7235389 parameters, 7235389 gradients\n",
"Model summary: 270 layers, 7235389 parameters, 7235389 gradients
, 16.6 GFLOPs
\n",
"\n",
"Transferred 349/349 items from yolov5s.pt\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
"Scaled weight_decay = 0.0005\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 978.19it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 13378.96it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 1053.85it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 2
07.08
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 2
96.75
it/s]\n",
"Plotting labels to runs/train/exp/labels.jpg... \n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
...
...
@@ -797,19 +803,19 @@
"Starting training for 3 epochs...\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 0/2 3.7
2G 0.04609 0.06258 0.01898 260 640: 100% 8/8 [00:03<00:00, 2.38
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
45
it/s]\n",
" all 128 929 0.7
24 0.638 0.718 0.477
\n",
" 0/2 3.7
6G 0.04445 0.06016 0.01651 247 640: 100% 8/8 [00:04<00:00, 1.74
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
38
it/s]\n",
" all 128 929 0.7
63 0.611 0.716 0.469
\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 1/2 4.
57G 0.04466 0.06904 0.01721 210 640: 100% 8/8 [00:00<00:00, 8.21
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
62
it/s]\n",
" all 128 929 0.7
32 0.658 0.746
0.488\n",
" 1/2 4.
79G 0.0443 0.06624 0.01655 188 640: 100% 8/8 [00:00<00:00, 8.46
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
44
it/s]\n",
" all 128 929 0.7
87 0.631 0.734
0.488\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 2/2 4.
57G 0.04489 0.06445 0.01634 269 640: 100% 8/8 [00:00<00:00, 9.12
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
59
it/s]\n",
" all 128 929 0.
783 0.652 0.758 0.502
\n",
" 2/2 4.
79G 0.04283 0.0579 0.01571 217 640: 100% 8/8 [00:00<00:00, 9.69
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
70
it/s]\n",
" all 128 929 0.
807 0.632 0.741 0.491
\n",
"\n",
"3 epochs completed in 0.003 hours.\n",
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
...
...
@@ -817,80 +823,80 @@
"\n",
"Validating runs/train/exp/weights/best.pt...\n",
"Fusing layers... \n",
"Model summary: 213 layers, 7225885 parameters, 0 gradients\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:0
3<00:00, 1.27
it/s]\n",
" all 128 929 0.
785 0.653 0.761 0.503
\n",
" person 128 254 0.8
66 0.71 0.82 0.531
\n",
" bicycle 128 6
0.764 0.546 0.62 0.375
\n",
" car 128 46 0.
615 0.556 0.565 0.211
\n",
" motorcycle 128 5 1
0.952 0.995 0.761
\n",
" airplane 128 6 0.9
37 1 0.995 0.751
\n",
" bus 128 7 0.
816 0.714 0.723 0.642
\n",
" train 128 3
0.985 0.667 0.863 0.561
\n",
" truck 128 12 0.
553 0.417 0.481 0.258
\n",
" boat 128 6 1 0.3
17 0.418 0.132
\n",
" traffic light 128 14 0.
668 0.287 0.372 0.227
\n",
" stop sign 128 2 0.
78
9 1 0.995 0.796\n",
" bench 128 9 0.
691 0.444 0.614 0.265
\n",
" bird 128 16 0.9
55 1 0.995 0.666
\n",
" cat 128 4 0.
811 1 0.995 0.797
\n",
" dog 128 9
1 0.657 0.886 0.637
\n",
" horse 128 2 0.8
06 1 0.995 0.647
\n",
" elephant 128 17 0.9
55 0.882 0.932 0.69
1\n",
" bear 128 1 0.6
81
1 0.995 0.895\n",
" zebra 128 4
0.8
7 1 0.995 0.947\n",
" giraffe 128 9 0.8
81 1 0.995 0.734
\n",
" backpack 128 6
0.926 0.667 0.808 0.359
\n",
" umbrella 128 18 0.8
11 0.667 0.864 0.507
\n",
" handbag 128 19 0.7
68 0.211 0.352 0.183
\n",
" tie 128 7 0.
778 0.714 0.822 0.495
\n",
" suitcase 128 4 0.
805 1 0.995 0.534
\n",
" frisbee 128 5 0.
697 0.8 0.8 0.74
\n",
" skis 128 1 0.7
34 1 0.995 0.4
\n",
" snowboard 128 7
0.859 0.714 0.852 0.563
\n",
" sports ball 128 6 0.6
12 0.667 0.603 0.328
\n",
" kite 128 10 0.
855 0.592 0.624
0.249\n",
" baseball bat 128 4 0.
403 0.25 0.401 0.17
1\n",
" baseball glove 128 7
0.7 0.429 0.467 0.323
\n",
" skateboard 128 5
1 0.57 0.862 0.512
\n",
" tennis racket 128 7 0.75
3 0.429 0.635 0.327
\n",
" bottle 128 18
0.59 0.4 0.578 0.293
\n",
" wine glass 128 16 0.
654 1 0.925 0.503
\n",
" cup 128 36
0.77 0.806 0.845 0.521
\n",
" fork 128 6
0.988 0.333 0.44 0.312
\n",
" knife 128 16 0.75
5 0.579 0.684 0.404
\n",
" spoon 128 22 0.8
27 0.436 0.629 0.35
4\n",
" bowl 128 28 0.
784 0.648 0.753 0.528
\n",
" banana 128 1 0.8
02 1 0.995 0.108
\n",
" sandwich 128 2 1 0 0.
606 0.545
\n",
" orange 128 4 0.
921 1 0.995 0.691
\n",
" broccoli 128 11 0.
379 0.455 0.468 0.338
\n",
" carrot 128 24 0.7
77 0.542 0.73 0.503
\n",
" hot dog 128 2 0.5
62 1 0.828 0.712
\n",
" pizza 128 5 0.8
02 0.814 0.962 0.694
\n",
" donut 128 14 0.6
94 1 0.981 0.848
\n",
" cake 128 4 0.8
64 1 0.995 0.858
\n",
" chair 128 35 0.
636 0.648 0.628 0.319
\n",
" couch 128 6
1 0.606 0.857 0.555
\n",
" potted plant 128 14 0.
739 0.786 0.837 0.476
\n",
" bed 128 3 1 0 0.
806 0.568
\n",
" dining table 128 13 0.
862 0.483 0.602 0.40
5\n",
" toilet 128 2 0.
941
1 0.995 0.846\n",
" tv 128 2 0.
677 1 0.995 0.796
\n",
" laptop 128 3 1 0
0.83 0.532
\n",
" mouse 128 2 1 0 0.09
31 0.0466
\n",
" remote 128 8 1 0.
612 0.659 0.534
\n",
" cell phone 128 8 0.6
45 0.25 0.437 0.227
\n",
" microwave 128 3 0.
797 1 0.995 0.734
\n",
" oven 128 5 0.4
35 0.4 0.44 0.29
\n",
" sink 128 6 0.3
45 0.167 0.301 0.211
\n",
" refrigerator 128 5 0.64
5 0.8 0.804 0.545
\n",
" book 128 29 0.6
03 0.207 0.301 0.17
1\n",
" clock 128 9 0.7
85 0.889 0.888 0.734
\n",
" vase 128 2 0.
477 1 0.995 0.92
\n",
" scissors 128 1 1 0 0.
995 0.199
\n",
" teddy bear 128 21
0.862 0.667 0.823 0.549
\n",
" toothbrush 128 5 0.
809 1 0.995 0.65
\n",
"Model summary: 213 layers, 7225885 parameters, 0 gradients
, 16.4 GFLOPs
\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:0
2<00:00, 1.36
it/s]\n",
" all 128 929 0.
808 0.631 0.741 0.491
\n",
" person 128 254 0.8
86 0.689 0.812 0.53
\n",
" bicycle 128 6
1 0.476 0.837 0.458
\n",
" car 128 46 0.
758 0.413 0.575 0.259
\n",
" motorcycle 128 5 1
0.93 0.995 0.702
\n",
" airplane 128 6 0.9
55 1 0.995 0.745
\n",
" bus 128 7 0.
755 0.714 0.832 0.691
\n",
" train 128 3
1 0.553 0.789 0.493
\n",
" truck 128 12 0.
629 0.417 0.491 0.269
\n",
" boat 128 6 1 0.3
32 0.507 0.201
\n",
" traffic light 128 14 0.
859 0.214 0.385 0.228
\n",
" stop sign 128 2 0.
80
9 1 0.995 0.796\n",
" bench 128 9 0.
818 0.504 0.64 0.259
\n",
" bird 128 16 0.9
21 1 0.995 0.64
\n",
" cat 128 4 0.
915 1 0.995 0.822
\n",
" dog 128 9
0.869 0.556 0.902 0.6
\n",
" horse 128 2 0.8
16 1 0.995 0.672
\n",
" elephant 128 17 0.9
73 0.882 0.934 0.73
1\n",
" bear 128 1 0.6
99
1 0.995 0.895\n",
" zebra 128 4
0.87
7 1 0.995 0.947\n",
" giraffe 128 9 0.8
68 0.889 0.975 0.742
\n",
" backpack 128 6
1 0.543 0.76 0.346
\n",
" umbrella 128 18 0.8
64 0.611 0.898 0.522
\n",
" handbag 128 19 0.7
01 0.127 0.335 0.174
\n",
" tie 128 7 0.
929 0.714 0.739 0.47
\n",
" suitcase 128 4 0.
658 0.75 0.795 0.536
\n",
" frisbee 128 5 0.
722 0.8 0.8 0.69
\n",
" skis 128 1 0.7
76 1 0.995 0.3
\n",
" snowboard 128 7
1 0.707 0.848 0.554
\n",
" sports ball 128 6 0.6
62 0.667 0.602 0.316
\n",
" kite 128 10 0.
727 0.536 0.647
0.249\n",
" baseball bat 128 4 0.
985 0.5 0.559 0.18
1\n",
" baseball glove 128 7
0.581 0.429 0.459 0.282
\n",
" skateboard 128 5
0.739 0.6 0.705 0.501
\n",
" tennis racket 128 7 0.75
9 0.429 0.566 0.31
\n",
" bottle 128 18
0.593 0.405 0.574 0.294
\n",
" wine glass 128 16 0.
742 0.875 0.91 0.497
\n",
" cup 128 36
0.833 0.694 0.817 0.514
\n",
" fork 128 6
1 0.32 0.463 0.31
\n",
" knife 128 16 0.75
7 0.585 0.73 0.385
\n",
" spoon 128 22 0.8
12 0.393 0.632 0.37
4\n",
" bowl 128 28 0.
869 0.571 0.718 0.496
\n",
" banana 128 1 0.8
94 1 0.995 0.205
\n",
" sandwich 128 2 1 0 0.
308 0.263
\n",
" orange 128 4 0.
876 1 0.995 0.703
\n",
" broccoli 128 11 0.
821 0.364 0.442 0.323
\n",
" carrot 128 24 0.7
09 0.625 0.72 0.464
\n",
" hot dog 128 2 0.5
46 1 0.828 0.745
\n",
" pizza 128 5 0.8
12 0.871 0.962 0.699
\n",
" donut 128 14 0.6
86 1 0.96 0.825
\n",
" cake 128 4 0.8
56 1 0.995 0.822
\n",
" chair 128 35 0.
591 0.577 0.616 0.311
\n",
" couch 128 6
0.973 0.667 0.857 0.532
\n",
" potted plant 128 14 0.
839 0.786 0.827 0.45
\n",
" bed 128 3 1 0 0.
641 0.403
\n",
" dining table 128 13 0.
631 0.266 0.462 0.37
5\n",
" toilet 128 2 0.
878
1 0.995 0.846\n",
" tv 128 2 0.
707 1 0.995 0.821
\n",
" laptop 128 3 1 0
0.863 0.498
\n",
" mouse 128 2 1 0 0.09
07 0.0544
\n",
" remote 128 8 1 0.
598 0.63 0.537
\n",
" cell phone 128 8 0.6
61 0.5 0.465 0.249
\n",
" microwave 128 3 0.
823 1 0.995 0.767
\n",
" oven 128 5 0.4
28 0.4 0.432 0.285
\n",
" sink 128 6 0.3
54 0.167 0.268 0.178
\n",
" refrigerator 128 5 0.64
9 0.8 0.806 0.551
\n",
" book 128 29 0.6
18 0.207 0.333 0.16
1\n",
" clock 128 9 0.7
92 0.889 0.943 0.735
\n",
" vase 128 2 0.
502 1 0.995 0.895
\n",
" scissors 128 1 1 0 0.
332 0.0663
\n",
" teddy bear 128 21
0.84 0.619 0.769 0.521
\n",
" toothbrush 128 5 0.
763 0.654 0.898 0.603
\n",
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
]
}
...
...
@@ -1110,4 +1116,4 @@
"outputs": []
}
]
}
}
\ No newline at end of file
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论