Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
0e5cfdbe
Unverified
提交
0e5cfdbe
authored
6月 09, 2021
作者:
Glenn Jocher
提交者:
GitHub
6月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor models/export.py arguments (#3564)
* Refactor models/export.py arguments * cleanup * cleanup
上级
66cf5c28
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
63 行增加
和
45 行删除
+63
-45
export.py
models/export.py
+63
-45
没有找到文件。
models/export.py
浏览文件 @
0e5cfdbe
"""Export
s
a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
Usage:
Usage:
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
...
@@ -21,42 +21,39 @@ from utils.activations import Hardswish, SiLU
...
@@ -21,42 +21,39 @@ from utils.activations import Hardswish, SiLU
from
utils.general
import
colorstr
,
check_img_size
,
check_requirements
,
file_size
,
set_logging
from
utils.general
import
colorstr
,
check_img_size
,
check_requirements
,
file_size
,
set_logging
from
utils.torch_utils
import
select_device
from
utils.torch_utils
import
select_device
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
def
export
(
weights
=
'./yolov5s.pt'
,
# weights path
parser
.
add_argument
(
'--weights'
,
type
=
str
,
default
=
'./yolov5s.pt'
,
help
=
'weights path'
)
img_size
=
(
640
,
640
),
# image (height, width)
parser
.
add_argument
(
'--img-size'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
640
,
640
],
help
=
'image size'
)
# height, width
batch_size
=
1
,
# batch size
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
1
,
help
=
'batch size'
)
device
=
'cpu'
,
# cuda device, i.e. 0 or 0,1,2,3 or cpu
parser
.
add_argument
(
'--device'
,
default
=
'cpu'
,
help
=
'cuda device, i.e. 0 or 0,1,2,3 or cpu'
)
include
=
(
'torchscript'
,
'onnx'
,
'coreml'
),
# include formats
parser
.
add_argument
(
'--include'
,
nargs
=
'+'
,
default
=
[
'torchscript'
,
'onnx'
,
'coreml'
],
help
=
'include formats'
)
half
=
False
,
# FP16 half-precision export
parser
.
add_argument
(
'--half'
,
action
=
'store_true'
,
help
=
'FP16 half-precision export'
)
inplace
=
False
,
# set YOLOv5 Detect() inplace=True
parser
.
add_argument
(
'--inplace'
,
action
=
'store_true'
,
help
=
'set YOLOv5 Detect() inplace=True'
)
train
=
False
,
# model.train() mode
parser
.
add_argument
(
'--train'
,
action
=
'store_true'
,
help
=
'model.train() mode'
)
optimize
=
False
,
# TorchScript: optimize for mobile
parser
.
add_argument
(
'--optimize'
,
action
=
'store_true'
,
help
=
'optimize TorchScript for mobile'
)
# TorchScript-only
dynamic
=
False
,
# ONNX: dynamic axes
parser
.
add_argument
(
'--dynamic'
,
action
=
'store_true'
,
help
=
'dynamic ONNX axes'
)
# ONNX-only
simplify
=
False
,
# ONNX: simplify model
parser
.
add_argument
(
'--simplify'
,
action
=
'store_true'
,
help
=
'simplify ONNX model'
)
# ONNX-only
opset_version
=
12
,
# ONNX: opset version
parser
.
add_argument
(
'--opset-version'
,
type
=
int
,
default
=
12
,
help
=
'ONNX opset version'
)
# ONNX-only
):
opt
=
parser
.
parse_args
()
opt
.
img_size
*=
2
if
len
(
opt
.
img_size
)
==
1
else
1
# expand
opt
.
include
=
[
x
.
lower
()
for
x
in
opt
.
include
]
print
(
opt
)
set_logging
()
t
=
time
.
time
()
t
=
time
.
time
()
include
=
[
x
.
lower
()
for
x
in
include
]
img_size
*=
2
if
len
(
img_size
)
==
1
else
1
# expand
# Load PyTorch model
# Load PyTorch model
device
=
select_device
(
opt
.
device
)
device
=
select_device
(
device
)
assert
not
(
opt
.
device
.
lower
()
==
'cpu'
and
opt
.
half
),
'--half only compatible with GPU export, i.e. use --device 0'
assert
not
(
device
.
type
==
'cpu'
and
opt
.
half
),
'--half only compatible with GPU export, i.e. use --device 0'
model
=
attempt_load
(
opt
.
weights
,
map_location
=
device
)
# load FP32 model
model
=
attempt_load
(
weights
,
map_location
=
device
)
# load FP32 model
labels
=
model
.
names
labels
=
model
.
names
# Input
# Input
gs
=
int
(
max
(
model
.
stride
))
# grid size (max stride)
gs
=
int
(
max
(
model
.
stride
))
# grid size (max stride)
opt
.
img_size
=
[
check_img_size
(
x
,
gs
)
for
x
in
opt
.
img_size
]
# verify img_size are gs-multiples
img_size
=
[
check_img_size
(
x
,
gs
)
for
x
in
img_size
]
# verify img_size are gs-multiples
img
=
torch
.
zeros
(
opt
.
batch_size
,
3
,
*
opt
.
img_size
)
.
to
(
device
)
# image size(1,3,320,192) iDetection
img
=
torch
.
zeros
(
batch_size
,
3
,
*
img_size
)
.
to
(
device
)
# image size(1,3,320,192) iDetection
# Update model
# Update model
if
opt
.
half
:
if
half
:
img
,
model
=
img
.
half
(),
model
.
half
()
# to FP16
img
,
model
=
img
.
half
(),
model
.
half
()
# to FP16
model
.
train
()
if
opt
.
train
else
model
.
eval
()
# training mode = no Detect() layer grid construction
model
.
train
()
if
train
else
model
.
eval
()
# training mode = no Detect() layer grid construction
for
k
,
m
in
model
.
named_modules
():
for
k
,
m
in
model
.
named_modules
():
m
.
_non_persistent_buffers_set
=
set
()
# pytorch 1.6.0 compatibility
m
.
_non_persistent_buffers_set
=
set
()
# pytorch 1.6.0 compatibility
if
isinstance
(
m
,
models
.
common
.
Conv
):
# assign export-friendly activations
if
isinstance
(
m
,
models
.
common
.
Conv
):
# assign export-friendly activations
...
@@ -65,42 +62,42 @@ if __name__ == '__main__':
...
@@ -65,42 +62,42 @@ if __name__ == '__main__':
elif
isinstance
(
m
.
act
,
nn
.
SiLU
):
elif
isinstance
(
m
.
act
,
nn
.
SiLU
):
m
.
act
=
SiLU
()
m
.
act
=
SiLU
()
elif
isinstance
(
m
,
models
.
yolo
.
Detect
):
elif
isinstance
(
m
,
models
.
yolo
.
Detect
):
m
.
inplace
=
opt
.
inplace
m
.
inplace
=
inplace
m
.
onnx_dynamic
=
opt
.
dynamic
m
.
onnx_dynamic
=
dynamic
# m.forward = m.forward_export # assign forward (optional)
# m.forward = m.forward_export # assign forward (optional)
for
_
in
range
(
2
):
for
_
in
range
(
2
):
y
=
model
(
img
)
# dry runs
y
=
model
(
img
)
# dry runs
print
(
f
"
\n
{colorstr('PyTorch:')} starting from {
opt.weights} ({file_size(opt.
weights):.1f} MB)"
)
print
(
f
"
\n
{colorstr('PyTorch:')} starting from {
weights} ({file_size(
weights):.1f} MB)"
)
# TorchScript export -----------------------------------------------------------------------------------------------
# TorchScript export -----------------------------------------------------------------------------------------------
if
'torchscript'
in
opt
.
include
or
'coreml'
in
opt
.
include
:
if
'torchscript'
in
include
or
'coreml'
in
include
:
prefix
=
colorstr
(
'TorchScript:'
)
prefix
=
colorstr
(
'TorchScript:'
)
try
:
try
:
print
(
f
'
\n
{prefix} starting export with torch {torch.__version__}...'
)
print
(
f
'
\n
{prefix} starting export with torch {torch.__version__}...'
)
f
=
opt
.
weights
.
replace
(
'.pt'
,
'.torchscript.pt'
)
# filename
f
=
weights
.
replace
(
'.pt'
,
'.torchscript.pt'
)
# filename
ts
=
torch
.
jit
.
trace
(
model
,
img
,
strict
=
False
)
ts
=
torch
.
jit
.
trace
(
model
,
img
,
strict
=
False
)
(
optimize_for_mobile
(
ts
)
if
opt
.
opt
imize
else
ts
)
.
save
(
f
)
(
optimize_for_mobile
(
ts
)
if
optimize
else
ts
)
.
save
(
f
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
except
Exception
as
e
:
except
Exception
as
e
:
print
(
f
'{prefix} export failure: {e}'
)
print
(
f
'{prefix} export failure: {e}'
)
# ONNX export ------------------------------------------------------------------------------------------------------
# ONNX export ------------------------------------------------------------------------------------------------------
if
'onnx'
in
opt
.
include
:
if
'onnx'
in
include
:
prefix
=
colorstr
(
'ONNX:'
)
prefix
=
colorstr
(
'ONNX:'
)
try
:
try
:
import
onnx
import
onnx
print
(
f
'{prefix} starting export with onnx {onnx.__version__}...'
)
print
(
f
'{prefix} starting export with onnx {onnx.__version__}...'
)
f
=
opt
.
weights
.
replace
(
'.pt'
,
'.onnx'
)
# filename
f
=
weights
.
replace
(
'.pt'
,
'.onnx'
)
# filename
torch
.
onnx
.
export
(
model
,
img
,
f
,
verbose
=
False
,
opset_version
=
op
t
.
op
set_version
,
torch
.
onnx
.
export
(
model
,
img
,
f
,
verbose
=
False
,
opset_version
=
opset_version
,
training
=
torch
.
onnx
.
TrainingMode
.
TRAINING
if
opt
.
train
else
torch
.
onnx
.
TrainingMode
.
EVAL
,
training
=
torch
.
onnx
.
TrainingMode
.
TRAINING
if
train
else
torch
.
onnx
.
TrainingMode
.
EVAL
,
do_constant_folding
=
not
opt
.
train
,
do_constant_folding
=
not
train
,
input_names
=
[
'images'
],
input_names
=
[
'images'
],
output_names
=
[
'output'
],
output_names
=
[
'output'
],
dynamic_axes
=
{
'images'
:
{
0
:
'batch'
,
2
:
'height'
,
3
:
'width'
},
# shape(1,3,640,640)
dynamic_axes
=
{
'images'
:
{
0
:
'batch'
,
2
:
'height'
,
3
:
'width'
},
# shape(1,3,640,640)
'output'
:
{
0
:
'batch'
,
1
:
'anchors'
}
# shape(1,25200,85)
'output'
:
{
0
:
'batch'
,
1
:
'anchors'
}
# shape(1,25200,85)
}
if
opt
.
dynamic
else
None
)
}
if
dynamic
else
None
)
# Checks
# Checks
model_onnx
=
onnx
.
load
(
f
)
# load onnx model
model_onnx
=
onnx
.
load
(
f
)
# load onnx model
...
@@ -108,7 +105,7 @@ if __name__ == '__main__':
...
@@ -108,7 +105,7 @@ if __name__ == '__main__':
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
# Simplify
# Simplify
if
opt
.
simplify
:
if
simplify
:
try
:
try
:
check_requirements
([
'onnx-simplifier'
])
check_requirements
([
'onnx-simplifier'
])
import
onnxsim
import
onnxsim
...
@@ -116,8 +113,8 @@ if __name__ == '__main__':
...
@@ -116,8 +113,8 @@ if __name__ == '__main__':
print
(
f
'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...'
)
print
(
f
'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...'
)
model_onnx
,
check
=
onnxsim
.
simplify
(
model_onnx
,
check
=
onnxsim
.
simplify
(
model_onnx
,
model_onnx
,
dynamic_input_shape
=
opt
.
dynamic
,
dynamic_input_shape
=
dynamic
,
input_shapes
=
{
'images'
:
list
(
img
.
shape
)}
if
opt
.
dynamic
else
None
)
input_shapes
=
{
'images'
:
list
(
img
.
shape
)}
if
dynamic
else
None
)
assert
check
,
'assert check failed'
assert
check
,
'assert check failed'
onnx
.
save
(
model_onnx
,
f
)
onnx
.
save
(
model_onnx
,
f
)
except
Exception
as
e
:
except
Exception
as
e
:
...
@@ -127,15 +124,15 @@ if __name__ == '__main__':
...
@@ -127,15 +124,15 @@ if __name__ == '__main__':
print
(
f
'{prefix} export failure: {e}'
)
print
(
f
'{prefix} export failure: {e}'
)
# CoreML export ----------------------------------------------------------------------------------------------------
# CoreML export ----------------------------------------------------------------------------------------------------
if
'coreml'
in
opt
.
include
:
if
'coreml'
in
include
:
prefix
=
colorstr
(
'CoreML:'
)
prefix
=
colorstr
(
'CoreML:'
)
try
:
try
:
import
coremltools
as
ct
import
coremltools
as
ct
print
(
f
'{prefix} starting export with coremltools {ct.__version__}...'
)
print
(
f
'{prefix} starting export with coremltools {ct.__version__}...'
)
assert
opt
.
train
,
'CoreML exports should be placed in model.train() mode with `python export.py --train`'
assert
train
,
'CoreML exports should be placed in model.train() mode with `python export.py --train`'
model
=
ct
.
convert
(
ts
,
inputs
=
[
ct
.
ImageType
(
'image'
,
shape
=
img
.
shape
,
scale
=
1
/
255.0
,
bias
=
[
0
,
0
,
0
])])
model
=
ct
.
convert
(
ts
,
inputs
=
[
ct
.
ImageType
(
'image'
,
shape
=
img
.
shape
,
scale
=
1
/
255.0
,
bias
=
[
0
,
0
,
0
])])
f
=
opt
.
weights
.
replace
(
'.pt'
,
'.mlmodel'
)
# filename
f
=
weights
.
replace
(
'.pt'
,
'.mlmodel'
)
# filename
model
.
save
(
f
)
model
.
save
(
f
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
except
Exception
as
e
:
except
Exception
as
e
:
...
@@ -143,3 +140,24 @@ if __name__ == '__main__':
...
@@ -143,3 +140,24 @@ if __name__ == '__main__':
# Finish
# Finish
print
(
f
'
\n
Export complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.'
)
print
(
f
'
\n
Export complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.'
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--weights'
,
type
=
str
,
default
=
'./yolov5s.pt'
,
help
=
'weights path'
)
parser
.
add_argument
(
'--img-size'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
640
,
640
],
help
=
'image (height, width)'
)
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
1
,
help
=
'batch size'
)
parser
.
add_argument
(
'--device'
,
default
=
'cpu'
,
help
=
'cuda device, i.e. 0 or 0,1,2,3 or cpu'
)
parser
.
add_argument
(
'--include'
,
nargs
=
'+'
,
default
=
[
'torchscript'
,
'onnx'
,
'coreml'
],
help
=
'include formats'
)
parser
.
add_argument
(
'--half'
,
action
=
'store_true'
,
help
=
'FP16 half-precision export'
)
parser
.
add_argument
(
'--inplace'
,
action
=
'store_true'
,
help
=
'set YOLOv5 Detect() inplace=True'
)
parser
.
add_argument
(
'--train'
,
action
=
'store_true'
,
help
=
'model.train() mode'
)
parser
.
add_argument
(
'--optimize'
,
action
=
'store_true'
,
help
=
'TorchScript: optimize for mobile'
)
parser
.
add_argument
(
'--dynamic'
,
action
=
'store_true'
,
help
=
'ONNX: dynamic axes'
)
parser
.
add_argument
(
'--simplify'
,
action
=
'store_true'
,
help
=
'ONNX: simplify model'
)
parser
.
add_argument
(
'--opset-version'
,
type
=
int
,
default
=
12
,
help
=
'ONNX: opset version'
)
opt
=
parser
.
parse_args
()
print
(
opt
)
set_logging
()
export
(
**
vars
(
opt
))
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论