Unverified 提交 19e24824 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

PyTorch version to screen and cleanup (#1325)

* Create flatten_recursive() helper function * cleanup * print torch version
上级 81d32010
import argparse
import logging
import math
import sys
from copy import deepcopy
from pathlib import Path
import math
sys.path.append('./') # to run '$ python *.py' files in subdirectories
logger = logging.getLogger(__name__)
......@@ -74,7 +73,7 @@ class Model(nn.Module):
# Define model
if nc and nc != self.yaml['nc']:
print('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
self.yaml['nc'] = nc # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
......@@ -93,7 +92,7 @@ class Model(nn.Module):
# Init weights, biases
initialize_weights(self)
self.info()
print('')
logger.info('')
def forward(self, x, augment=False, profile=False):
if augment:
......
......@@ -262,6 +262,7 @@ def test(data,
print('ERROR: pycocotools unable to run: %s' % e)
# Return results
if not training:
print('Results saved to %s' % save_dir)
model.float() # for training
maps = np.zeros(nc) + map
......
......@@ -946,3 +946,11 @@ def create_folder(path='./new'):
if os.path.exists(path):
shutil.rmtree(path) # delete output folder
os.makedirs(path) # make new output folder
def flatten_recursive(path='../coco128'):
# Flatten a recursive directory by bringing all files to top level
new_path = Path(path + '_flat')
create_folder(new_path)
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
shutil.copyfile(file, new_path / Path(file).name)
import logging
import math
import os
import time
from copy import deepcopy
import math
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
......@@ -39,14 +39,13 @@ def select_device(device='', batch_size=None):
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
s = 'Using CUDA '
s = f'Using torch {torch.__version__} '
for i in range(0, ng):
if i == 1:
s = ' ' * len(s)
logger.info("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
(s, i, x[i].name, x[i].total_memory / c))
logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
else:
logger.info('Using CPU')
logger.info(f'Using torch {torch.__version__} CPU')
logger.info('') # skip a line
return torch.device('cuda:0' if cuda else 'cpu')
......@@ -143,7 +142,7 @@ def model_info(model, verbose=False):
from thop import profile
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
except:
except ImportError:
fs = ''
logger.info(
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论