Unverified 提交 6e466177 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

AutoBatch checks against failed solutions (#8159)

* AutoBatch checks against failed solutions @kalenmike this is a simple improvement to AutoBatch to verify that returned solutions have not already failed, i.e. return batch-size 8 when 8 already produced CUDA out of memory. This is a halfway fix until I can implement a 'final solution' that will actively verify the solved-for batch size rather than passively assume it works. * Update autobatch.py * Update autobatch.py
上级 cf298fb7
......@@ -8,7 +8,7 @@ from copy import deepcopy
import numpy as np
import torch
from utils.general import LOGGER, colorstr
from utils.general import LOGGER, colorstr, emojis
from utils.torch_utils import profile
......@@ -26,6 +26,7 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
# print(autobatch(model))
# Check device
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
device = next(model.parameters()).device # get model device
......@@ -33,25 +34,33 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size
# Inspect CUDA memory
gb = 1 << 30 # bytes to GiB (1024 ** 3)
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / gb # (GiB)
r = torch.cuda.memory_reserved(device) / gb # (GiB)
a = torch.cuda.memory_allocated(device) / gb # (GiB)
f = t - (r + a) # free inside reserved
t = properties.total_memory / gb # GiB total
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
f = t - (r + a) # GiB free
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
# Profile batch sizes
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
y = profile(img, model, n=3, device=device)
results = profile(img, model, n=3, device=device)
except Exception as e:
LOGGER.warning(f'{prefix}{e}')
y = [x[2] for x in y if x] # memory [2]
batch_sizes = batch_sizes[:len(y)]
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
# Fit a solution
y = [x[2] for x in results if x] # memory [2]
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
if None in results: # some sizes failed
i = results.index(None) # first fail index
if b >= batch_sizes[i]: # y intercept above failure point
b = batch_sizes[max(i - 1, 0)] # select prior safe point
fraction = np.polyval(p, b) / t # actual fraction predicted
LOGGER.info(emojis(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅'))
return b
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论