提交 6f718cee authored 作者: Glenn Jocher's avatar Glenn Jocher

Created using Colaboratory

上级 20d879db
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
"accelerator": "GPU", "accelerator": "GPU",
"widgets": { "widgets": {
"application/vnd.jupyter.widget-state+json": { "application/vnd.jupyter.widget-state+json": {
"1f8e9b8ebded4175b2eaa9f75c3ceb00": { "b54ab52f1d4f4903897ab6cd49a3b9b2": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel", "model_name": "HBoxModel",
"state": { "state": {
...@@ -28,15 +28,15 @@ ...@@ -28,15 +28,15 @@
"_view_count": null, "_view_count": null,
"_view_module_version": "1.5.0", "_view_module_version": "1.5.0",
"box_style": "", "box_style": "",
"layout": "IPY_MODEL_0a1246a73077468ab80e979cc0576cd2", "layout": "IPY_MODEL_1852f93fc2714d40adccb8aa161c42ff",
"_model_module": "@jupyter-widgets/controls", "_model_module": "@jupyter-widgets/controls",
"children": [ "children": [
"IPY_MODEL_d327cde5a85a4a51bb8b1b3e9cf06c97", "IPY_MODEL_3293cfe869bd4a1bbbe18b49b6815de1",
"IPY_MODEL_d5ef1cb2cbed4b87b3c5d292ff2b0da6" "IPY_MODEL_8d5ee8b8ab6d46b98818bd2c562ddd1c"
] ]
} }
}, },
"0a1246a73077468ab80e979cc0576cd2": { "1852f93fc2714d40adccb8aa161c42ff": {
"model_module": "@jupyter-widgets/base", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_name": "LayoutModel",
"state": { "state": {
...@@ -87,12 +87,12 @@ ...@@ -87,12 +87,12 @@
"left": null "left": null
} }
}, },
"d327cde5a85a4a51bb8b1b3e9cf06c97": { "3293cfe869bd4a1bbbe18b49b6815de1": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel", "model_name": "FloatProgressModel",
"state": { "state": {
"_view_name": "ProgressView", "_view_name": "ProgressView",
"style": "IPY_MODEL_8d5dff8bca14435a88fa1814533acd85", "style": "IPY_MODEL_49fcb2adb0354430b76f491af98abfe9",
"_dom_classes": [], "_dom_classes": [],
"description": "100%", "description": "100%",
"_model_name": "FloatProgressModel", "_model_name": "FloatProgressModel",
...@@ -107,30 +107,30 @@ ...@@ -107,30 +107,30 @@
"min": 0, "min": 0,
"description_tooltip": null, "description_tooltip": null,
"_model_module": "@jupyter-widgets/controls", "_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_3d5136c19e7645ca9bc8f51ceffb2be1" "layout": "IPY_MODEL_c7d76e0c53064363add56b8d05e561f5"
} }
}, },
"d5ef1cb2cbed4b87b3c5d292ff2b0da6": { "8d5ee8b8ab6d46b98818bd2c562ddd1c": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel", "model_name": "HTMLModel",
"state": { "state": {
"_view_name": "HTMLView", "_view_name": "HTMLView",
"style": "IPY_MODEL_2919396dbd4b4c8e821d12bd28665d8a", "style": "IPY_MODEL_48f321f789634aa584f8a29a3b925dd5",
"_dom_classes": [], "_dom_classes": [],
"description": "", "description": "",
"_model_name": "HTMLModel", "_model_name": "HTMLModel",
"placeholder": "​", "placeholder": "​",
"_view_module": "@jupyter-widgets/controls", "_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0", "_model_module_version": "1.5.0",
"value": " 781M/781M [00:12<00:00, 65.5MB/s]", "value": " 781M/781M [00:13<00:00, 62.6MB/s]",
"_view_count": null, "_view_count": null,
"_view_module_version": "1.5.0", "_view_module_version": "1.5.0",
"description_tooltip": null, "description_tooltip": null,
"_model_module": "@jupyter-widgets/controls", "_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_6feb16f2b2fa4021b1a271e1dd442d04" "layout": "IPY_MODEL_6610d6275f3e49d9937d50ed0a105947"
} }
}, },
"8d5dff8bca14435a88fa1814533acd85": { "49fcb2adb0354430b76f491af98abfe9": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel", "model_name": "ProgressStyleModel",
"state": { "state": {
...@@ -145,7 +145,7 @@ ...@@ -145,7 +145,7 @@
"_model_module": "@jupyter-widgets/controls" "_model_module": "@jupyter-widgets/controls"
} }
}, },
"3d5136c19e7645ca9bc8f51ceffb2be1": { "c7d76e0c53064363add56b8d05e561f5": {
"model_module": "@jupyter-widgets/base", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_name": "LayoutModel",
"state": { "state": {
...@@ -196,7 +196,7 @@ ...@@ -196,7 +196,7 @@
"left": null "left": null
} }
}, },
"2919396dbd4b4c8e821d12bd28665d8a": { "48f321f789634aa584f8a29a3b925dd5": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel", "model_name": "DescriptionStyleModel",
"state": { "state": {
...@@ -210,7 +210,7 @@ ...@@ -210,7 +210,7 @@
"_model_module": "@jupyter-widgets/controls" "_model_module": "@jupyter-widgets/controls"
} }
}, },
"6feb16f2b2fa4021b1a271e1dd442d04": { "6610d6275f3e49d9937d50ed0a105947": {
"model_module": "@jupyter-widgets/base", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_name": "LayoutModel",
"state": { "state": {
...@@ -261,7 +261,7 @@ ...@@ -261,7 +261,7 @@
"left": null "left": null
} }
}, },
"e6459e0bcee449b090fc9807672725bc": { "0fffa335322b41658508e06aed0acbf0": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel", "model_name": "HBoxModel",
"state": { "state": {
...@@ -273,15 +273,15 @@ ...@@ -273,15 +273,15 @@
"_view_count": null, "_view_count": null,
"_view_module_version": "1.5.0", "_view_module_version": "1.5.0",
"box_style": "", "box_style": "",
"layout": "IPY_MODEL_c341e1d3bf3b40d1821ce392eb966c68", "layout": "IPY_MODEL_a354c6f80ce347e5a3ef64af87c0eccb",
"_model_module": "@jupyter-widgets/controls", "_model_module": "@jupyter-widgets/controls",
"children": [ "children": [
"IPY_MODEL_660afee173694231a6dce3cd94df6cae", "IPY_MODEL_85823e71fea54c39bd11e2e972348836",
"IPY_MODEL_261218485cef48df961519dde5edfcbe" "IPY_MODEL_fb11acd663fa4e71b041d67310d045fd"
] ]
} }
}, },
"c341e1d3bf3b40d1821ce392eb966c68": { "a354c6f80ce347e5a3ef64af87c0eccb": {
"model_module": "@jupyter-widgets/base", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_name": "LayoutModel",
"state": { "state": {
...@@ -332,12 +332,12 @@ ...@@ -332,12 +332,12 @@
"left": null "left": null
} }
}, },
"660afee173694231a6dce3cd94df6cae": { "85823e71fea54c39bd11e2e972348836": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel", "model_name": "FloatProgressModel",
"state": { "state": {
"_view_name": "ProgressView", "_view_name": "ProgressView",
"style": "IPY_MODEL_32736d503c06497abfae8c0421918255", "style": "IPY_MODEL_8a919053b780449aae5523658ad611fa",
"_dom_classes": [], "_dom_classes": [],
"description": "100%", "description": "100%",
"_model_name": "FloatProgressModel", "_model_name": "FloatProgressModel",
...@@ -352,30 +352,30 @@ ...@@ -352,30 +352,30 @@
"min": 0, "min": 0,
"description_tooltip": null, "description_tooltip": null,
"_model_module": "@jupyter-widgets/controls", "_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_e257738711f54d5280c8393d9d3dce1c" "layout": "IPY_MODEL_5bae9393a58b44f7b69fb04816f94f6f"
} }
}, },
"261218485cef48df961519dde5edfcbe": { "fb11acd663fa4e71b041d67310d045fd": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel", "model_name": "HTMLModel",
"state": { "state": {
"_view_name": "HTMLView", "_view_name": "HTMLView",
"style": "IPY_MODEL_beb7a6fe34b840899bb79c062681696f", "style": "IPY_MODEL_d26c6d16c7f24030ab2da5285bf198ee",
"_dom_classes": [], "_dom_classes": [],
"description": "", "description": "",
"_model_name": "HTMLModel", "_model_name": "HTMLModel",
"placeholder": "​", "placeholder": "​",
"_view_module": "@jupyter-widgets/controls", "_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0", "_model_module_version": "1.5.0",
"value": " 21.1M/21.1M [00:00<00:00, 33.5MB/s]", "value": " 21.1M/21.1M [00:02<00:00, 9.36MB/s]",
"_view_count": null, "_view_count": null,
"_view_module_version": "1.5.0", "_view_module_version": "1.5.0",
"description_tooltip": null, "description_tooltip": null,
"_model_module": "@jupyter-widgets/controls", "_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_e639132395d64d70b99d8b72c32f8fbb" "layout": "IPY_MODEL_f7767886b2364c8d9efdc79e175ad8eb"
} }
}, },
"32736d503c06497abfae8c0421918255": { "8a919053b780449aae5523658ad611fa": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel", "model_name": "ProgressStyleModel",
"state": { "state": {
...@@ -390,7 +390,7 @@ ...@@ -390,7 +390,7 @@
"_model_module": "@jupyter-widgets/controls" "_model_module": "@jupyter-widgets/controls"
} }
}, },
"e257738711f54d5280c8393d9d3dce1c": { "5bae9393a58b44f7b69fb04816f94f6f": {
"model_module": "@jupyter-widgets/base", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_name": "LayoutModel",
"state": { "state": {
...@@ -441,7 +441,7 @@ ...@@ -441,7 +441,7 @@
"left": null "left": null
} }
}, },
"beb7a6fe34b840899bb79c062681696f": { "d26c6d16c7f24030ab2da5285bf198ee": {
"model_module": "@jupyter-widgets/controls", "model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel", "model_name": "DescriptionStyleModel",
"state": { "state": {
...@@ -455,7 +455,7 @@ ...@@ -455,7 +455,7 @@
"_model_module": "@jupyter-widgets/controls" "_model_module": "@jupyter-widgets/controls"
} }
}, },
"e639132395d64d70b99d8b72c32f8fbb": { "f7767886b2364c8d9efdc79e175ad8eb": {
"model_module": "@jupyter-widgets/base", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_name": "LayoutModel",
"state": { "state": {
...@@ -550,7 +550,7 @@ ...@@ -550,7 +550,7 @@
"colab": { "colab": {
"base_uri": "https://localhost:8080/" "base_uri": "https://localhost:8080/"
}, },
"outputId": "ae8805a9-ce15-4e1c-f6b4-baa1c1033f56" "outputId": "20027455-bf84-41fd-c902-b7282d53c91d"
}, },
"source": [ "source": [
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n", "!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
...@@ -563,12 +563,12 @@ ...@@ -563,12 +563,12 @@
"clear_output()\n", "clear_output()\n",
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))" "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
], ],
"execution_count": null, "execution_count": 1,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"Setup complete. Using torch 1.7.0+cu101 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16160MB, multi_processor_count=80)\n" "Setup complete. Using torch 1.8.0+cu101 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16160MB, multi_processor_count=80)\n"
], ],
"name": "stdout" "name": "stdout"
} }
...@@ -672,30 +672,30 @@ ...@@ -672,30 +672,30 @@
"base_uri": "https://localhost:8080/", "base_uri": "https://localhost:8080/",
"height": 65, "height": 65,
"referenced_widgets": [ "referenced_widgets": [
"1f8e9b8ebded4175b2eaa9f75c3ceb00", "b54ab52f1d4f4903897ab6cd49a3b9b2",
"0a1246a73077468ab80e979cc0576cd2", "1852f93fc2714d40adccb8aa161c42ff",
"d327cde5a85a4a51bb8b1b3e9cf06c97", "3293cfe869bd4a1bbbe18b49b6815de1",
"d5ef1cb2cbed4b87b3c5d292ff2b0da6", "8d5ee8b8ab6d46b98818bd2c562ddd1c",
"8d5dff8bca14435a88fa1814533acd85", "49fcb2adb0354430b76f491af98abfe9",
"3d5136c19e7645ca9bc8f51ceffb2be1", "c7d76e0c53064363add56b8d05e561f5",
"2919396dbd4b4c8e821d12bd28665d8a", "48f321f789634aa584f8a29a3b925dd5",
"6feb16f2b2fa4021b1a271e1dd442d04" "6610d6275f3e49d9937d50ed0a105947"
] ]
}, },
"outputId": "d6ace7c6-1be5-41ff-d607-1c716b88d298" "outputId": "f0884441-78d9-443c-afa6-d00ec387908d"
}, },
"source": [ "source": [
"# Download COCO val2017\n", "# Download COCO val2017\n",
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n", "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../ && rm tmp.zip" "!unzip -q tmp.zip -d ../ && rm tmp.zip"
], ],
"execution_count": null, "execution_count": 2,
"outputs": [ "outputs": [
{ {
"output_type": "display_data", "output_type": "display_data",
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "1f8e9b8ebded4175b2eaa9f75c3ceb00", "model_id": "b54ab52f1d4f4903897ab6cd49a3b9b2",
"version_minor": 0, "version_minor": 0,
"version_major": 2 "version_major": 2
}, },
...@@ -723,45 +723,45 @@ ...@@ -723,45 +723,45 @@
"colab": { "colab": {
"base_uri": "https://localhost:8080/" "base_uri": "https://localhost:8080/"
}, },
"outputId": "cc25f70c-0a11-44f6-cc44-e92c5083488c" "outputId": "5b54c11e-9f4b-4d9a-8e6e-6a2a4f0cc60d"
}, },
"source": [ "source": [
"# Run YOLOv5x on COCO val2017\n", "# Run YOLOv5x on COCO val2017\n",
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65" "!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
], ],
"execution_count": null, "execution_count": 3,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n", "Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
"YOLOv5 v4.0-75-gbdd88e1 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", "YOLOv5 v4.0-133-g20d879d torch 1.8.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
"\n", "\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5x.pt to yolov5x.pt...\n", "Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5x.pt to yolov5x.pt...\n",
"100% 168M/168M [00:04<00:00, 39.7MB/s]\n", "100% 168M/168M [00:02<00:00, 59.1MB/s]\n",
"\n", "\n",
"Fusing layers... \n", "Fusing layers... \n",
"Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n", "Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2824.78it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 3236.68it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:33<00:00, 1.68it/s]\n", " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:20<00:00, 1.95it/s]\n",
" all 5e+03 3.63e+04 0.749 0.619 0.68 0.486\n", " all 5000 36335 0.749 0.619 0.68 0.486\n",
"Speed: 5.2/2.0/7.3 ms inference/NMS/total per 640x640 image at batch-size 32\n", "Speed: 5.3/1.7/6.9 ms inference/NMS/total per 640x640 image at batch-size 32\n",
"\n", "\n",
"Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n", "Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
"loading annotations into memory...\n", "loading annotations into memory...\n",
"Done (t=0.44s)\n", "Done (t=0.43s)\n",
"creating index...\n", "creating index...\n",
"index created!\n", "index created!\n",
"Loading and preparing results...\n", "Loading and preparing results...\n",
"DONE (t=4.47s)\n", "DONE (t=5.10s)\n",
"creating index...\n", "creating index...\n",
"index created!\n", "index created!\n",
"Running per image evaluation...\n", "Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n", "Evaluate annotation type *bbox*\n",
"DONE (t=94.87s).\n", "DONE (t=88.52s).\n",
"Accumulating evaluation results...\n", "Accumulating evaluation results...\n",
"DONE (t=15.96s).\n", "DONE (t=17.17s).\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.501\n", " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.501\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.687\n", " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.687\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.544\n", " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.544\n",
...@@ -836,30 +836,30 @@ ...@@ -836,30 +836,30 @@
"base_uri": "https://localhost:8080/", "base_uri": "https://localhost:8080/",
"height": 65, "height": 65,
"referenced_widgets": [ "referenced_widgets": [
"e6459e0bcee449b090fc9807672725bc", "0fffa335322b41658508e06aed0acbf0",
"c341e1d3bf3b40d1821ce392eb966c68", "a354c6f80ce347e5a3ef64af87c0eccb",
"660afee173694231a6dce3cd94df6cae", "85823e71fea54c39bd11e2e972348836",
"261218485cef48df961519dde5edfcbe", "fb11acd663fa4e71b041d67310d045fd",
"32736d503c06497abfae8c0421918255", "8a919053b780449aae5523658ad611fa",
"e257738711f54d5280c8393d9d3dce1c", "5bae9393a58b44f7b69fb04816f94f6f",
"beb7a6fe34b840899bb79c062681696f", "d26c6d16c7f24030ab2da5285bf198ee",
"e639132395d64d70b99d8b72c32f8fbb" "f7767886b2364c8d9efdc79e175ad8eb"
] ]
}, },
"outputId": "e8b7d5b3-a71e-4446-eec2-ad13419cf700" "outputId": "b41ac253-9e1b-4c26-d78b-700ea0154f43"
}, },
"source": [ "source": [
"# Download COCO128\n", "# Download COCO128\n",
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n", "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../ && rm tmp.zip" "!unzip -q tmp.zip -d ../ && rm tmp.zip"
], ],
"execution_count": null, "execution_count": 4,
"outputs": [ "outputs": [
{ {
"output_type": "display_data", "output_type": "display_data",
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "e6459e0bcee449b090fc9807672725bc", "model_id": "0fffa335322b41658508e06aed0acbf0",
"version_minor": 0, "version_minor": 0,
"version_major": 2 "version_major": 2
}, },
...@@ -924,27 +924,27 @@ ...@@ -924,27 +924,27 @@
"colab": { "colab": {
"base_uri": "https://localhost:8080/" "base_uri": "https://localhost:8080/"
}, },
"outputId": "38e51b29-2df4-4f00-cde8-5f6e4a34da9e" "outputId": "cf494627-09b9-4399-ff0c-fdb62b32340a"
}, },
"source": [ "source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n", "# Train YOLOv5s on COCO128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache" "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
], ],
"execution_count": null, "execution_count": 5,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 v4.0-75-gbdd88e1 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", "YOLOv5 v4.0-133-g20d879d torch 1.8.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
"\n", "\n",
"Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], linear_lr=False, local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=8, world_size=1)\n", "Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], linear_lr=False, local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=8, world_size=1)\n",
"\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n", "\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
"Start Tensorboard with \"tensorboard --logdir runs/train\", view at http://localhost:6006/\n", "Start Tensorboard with \"tensorboard --logdir runs/train\", view at http://localhost:6006/\n",
"2021-02-12 06:38:28.027271: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1\n", "2021-03-14 04:18:58.124672: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n", "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt to yolov5s.pt...\n", "Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:01<00:00, 13.2MB/s]\n", "100% 14.1M/14.1M [00:00<00:00, 63.1MB/s]\n",
"\n", "\n",
"\n", "\n",
" from n params module arguments \n", " from n params module arguments \n",
...@@ -978,11 +978,11 @@ ...@@ -978,11 +978,11 @@
"Transferred 362/362 items from yolov5s.pt\n", "Transferred 362/362 items from yolov5s.pt\n",
"Scaled weight_decay = 0.0005\n", "Scaled weight_decay = 0.0005\n",
"Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n", "Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2566.00it/s]\n", "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2956.76it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../coco128/labels/train2017.cache\n", "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../coco128/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 175.07it/s]\n", "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 205.30it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 764773.38it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 604584.36it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 128.17it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 144.17it/s]\n",
"Plotting labels... \n", "Plotting labels... \n",
"\n", "\n",
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n", "\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
...@@ -991,21 +991,22 @@ ...@@ -991,21 +991,22 @@
"Logging results to runs/train/exp\n", "Logging results to runs/train/exp\n",
"Starting training for 3 epochs...\n", "Starting training for 3 epochs...\n",
"\n", "\n",
" Epoch gpu_mem box obj cls total targets img_size\n", " Epoch gpu_mem box obj cls total labels img_size\n",
" 0/2 3.27G 0.04357 0.06781 0.01869 0.1301 207 640: 100% 8/8 [00:03<00:00, 2.03it/s]\n", " 0/2 3.29G 0.04237 0.06417 0.02121 0.1277 183 640: 100% 8/8 [00:03<00:00, 2.41it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:04<00:00, 1.14s/it]\n", " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:04<00:00, 1.04s/it]\n",
" all 128 929 0.646 0.627 0.659 0.431\n", " all 128 929 0.642 0.637 0.661 0.432\n",
"\n", "\n",
" Epoch gpu_mem box obj cls total targets img_size\n", " Epoch gpu_mem box obj cls total labels img_size\n",
" 1/2 7.75G 0.04308 0.06654 0.02083 0.1304 227 640: 100% 8/8 [00:01<00:00, 4.11it/s]\n", " 1/2 6.65G 0.04431 0.06403 0.019 0.1273 166 640: 100% 8/8 [00:01<00:00, 5.73it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:01<00:00, 2.94it/s]\n", " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:01<00:00, 3.21it/s]\n",
" all 128 929 0.681 0.607 0.663 0.434\n", " all 128 929 0.662 0.626 0.658 0.433\n",
"\n", "\n",
" Epoch gpu_mem box obj cls total targets img_size\n", " Epoch gpu_mem box obj cls total labels img_size\n",
" 2/2 7.75G 0.04461 0.06896 0.01866 0.1322 191 640: 100% 8/8 [00:02<00:00, 3.94it/s]\n", " 2/2 6.65G 0.04506 0.06836 0.01913 0.1325 182 640: 100% 8/8 [00:01<00:00, 5.51it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.22it/s]\n", " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:02<00:00, 1.35it/s]\n",
" all 128 929 0.642 0.632 0.662 0.432\n", " all 128 929 0.658 0.625 0.661 0.433\n",
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n", "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
"3 epochs completed in 0.007 hours.\n", "3 epochs completed in 0.007 hours.\n",
"\n" "\n"
], ],
...@@ -1247,4 +1248,4 @@ ...@@ -1247,4 +1248,4 @@
"outputs": [] "outputs": []
} }
] ]
} }
\ No newline at end of file
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论