Unverified 提交 7316b78e authored 作者: Ayush Chaurasia's avatar Ayush Chaurasia 提交者: GitHub

W&B: Refactor the wandb_utils.py file (#4496)

* Improve docstrings and run names * default wandb login prompt with timeout * return key * Update api_key check logic * Properly support zipped dataset feature * update docstring * Revert tuorial change * extend changes to log_dataset * add run name * bug fix * bug fix * Update comment * fix import check * remove unused import * Hardcore .yaml file extension * reduce code * Reformat using pycharm * Remove redundant try catch * More refactoring and bug fixes * retry * Reformat using pycharm * respect LOGGERS include list * Fix * fix * refactor constructor * refactor * refactor * refactor * PyCharm reformat Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
上级 d1182c4f
...@@ -38,6 +38,19 @@ def check_wandb_config_file(data_config_file): ...@@ -38,6 +38,19 @@ def check_wandb_config_file(data_config_file):
return data_config_file return data_config_file
def check_wandb_dataset(data_file):
is_wandb_artifact = False
if check_file(data_file) and data_file.endswith('.yaml'):
with open(data_file, errors='ignore') as f:
data_dict = yaml.safe_load(f)
is_wandb_artifact = (data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX) or
data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX))
if is_wandb_artifact:
return data_dict
else:
return check_dataset(data_file)
def get_run_info(run_path): def get_run_info(run_path):
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX)) run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
run_id = run_path.stem run_id = run_path.stem
...@@ -147,26 +160,24 @@ class WandbLogger(): ...@@ -147,26 +160,24 @@ class WandbLogger():
allow_val_change=True) if not wandb.run else wandb.run allow_val_change=True) if not wandb.run else wandb.run
if self.wandb_run: if self.wandb_run:
if self.job_type == 'Training': if self.job_type == 'Training':
if not opt.resume:
if opt.upload_dataset: if opt.upload_dataset:
if not opt.resume:
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt) self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
elif opt.data.endswith('_wandb.yaml'): # When dataset is W&B artifact if opt.resume:
with open(opt.data, errors='ignore') as f: # resume from artifact
data_dict = yaml.safe_load(f) if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
self.data_dict = data_dict self.data_dict = dict(self.wandb_run.config.data_dict)
else: # Local .yaml dataset file or .zip file else: # local resume
self.data_dict = check_dataset(opt.data) self.data_dict = check_wandb_dataset(opt.data)
else: else:
self.data_dict = check_dataset(opt.data) self.data_dict = check_wandb_dataset(opt.data)
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
self.setup_training(opt)
if not self.wandb_artifact_data_dict:
self.wandb_artifact_data_dict = self.data_dict
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming. # write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
if not opt.resume:
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict},
allow_val_change=True) allow_val_change=True)
self.setup_training(opt)
if self.job_type == 'Dataset Creation': if self.job_type == 'Dataset Creation':
self.data_dict = self.check_and_upload_dataset(opt) self.data_dict = self.check_and_upload_dataset(opt)
...@@ -211,8 +222,6 @@ class WandbLogger(): ...@@ -211,8 +222,6 @@ class WandbLogger():
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str( opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \ self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
config.hyp config.hyp
data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
else:
data_dict = self.data_dict data_dict = self.data_dict
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'), self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论