Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
7fc7ed77
提交
7fc7ed77
authored
11月 18, 2022
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Created using Colaboratory
上级
2ecaa96c
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
31 行增加
和
37 行删除
+31
-37
tutorial.ipynb
segment/tutorial.ipynb
+31
-37
没有找到文件。
segment/tutorial.ipynb
浏览文件 @
7fc7ed77
...
@@ -42,14 +42,14 @@
...
@@ -42,14 +42,14 @@
"base_uri": "https://localhost:8080/"
"base_uri": "https://localhost:8080/"
},
},
"id": "wbvMlHd_QwMG",
"id": "wbvMlHd_QwMG",
"outputId": "
d1e33dfc-9ad4-436e-f1e5-01acee40c029
"
"outputId": "
664f49fa-554a-4dca-8d0e-5c9dd60f6d28
"
},
},
"outputs": [
"outputs": [
{
{
"output_type": "stream",
"output_type": "stream",
"name": "stderr",
"name": "stderr",
"text": [
"text": [
"YOLOv5 🚀 v6.2-25
1-g241d798
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
"YOLOv5 🚀 v6.2-25
7-g2ecaa96
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
]
]
},
},
{
{
...
@@ -100,7 +100,7 @@
...
@@ -100,7 +100,7 @@
"base_uri": "https://localhost:8080/"
"base_uri": "https://localhost:8080/"
},
},
"id": "zR9ZbuQCH7FX",
"id": "zR9ZbuQCH7FX",
"outputId": "
e206fcec-cf42-4754-8a42-39bc3603eba8
"
"outputId": "
6392c9ff-0863-4665-faf9-b3af9881c305
"
},
},
"outputs": [
"outputs": [
{
{
...
@@ -108,16 +108,16 @@
...
@@ -108,16 +108,16 @@
"name": "stdout",
"name": "stdout",
"text": [
"text": [
"\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
"\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
"YOLOv5 🚀 v6.2-25
1-g241d798
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"YOLOv5 🚀 v6.2-25
7-g2ecaa96
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-seg.pt to yolov5s-seg.pt...\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-seg.pt to yolov5s-seg.pt...\n",
"100% 14.9M/14.9M [00:0
3<00:00, 3.93
MB/s]\n",
"100% 14.9M/14.9M [00:0
1<00:00, 9.09
MB/s]\n",
"\n",
"\n",
"Fusing layers... \n",
"Fusing layers... \n",
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1
7.2
ms\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1
8.0
ms\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.
7
ms\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.
5
ms\n",
"Speed: 0.
4ms pre-process, 15.5ms inference, 22.2
ms NMS per image at shape (1, 3, 640, 640)\n",
"Speed: 0.
5ms pre-process, 15.7ms inference, 18.5
ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
"Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
]
]
}
}
...
@@ -155,7 +155,7 @@
...
@@ -155,7 +155,7 @@
"base_uri": "https://localhost:8080/"
"base_uri": "https://localhost:8080/"
},
},
"id": "WQPtK1QYVaD_",
"id": "WQPtK1QYVaD_",
"outputId": "
f7eba0ae-49d1-405b-a1cf-169212fadc2c
"
"outputId": "
4707734e-00c7-43da-d642-32c3c3fe3090
"
},
},
"outputs": [
"outputs": [
{
{
...
@@ -182,26 +182,23 @@
...
@@ -182,26 +182,23 @@
"base_uri": "https://localhost:8080/"
"base_uri": "https://localhost:8080/"
},
},
"id": "X58w8JLpMnjH",
"id": "X58w8JLpMnjH",
"outputId": "
73533135-6995-4f2d-adb0-3acb5ef9b300
"
"outputId": "
f96b700d-c779-4a34-930b-e85be4e58974
"
},
},
"outputs": [
"outputs": [
{
{
"metadata": {
"tags": null
},
"name": "stdout",
"output_type": "stream",
"output_type": "stream",
"name": "stdout",
"text": [
"text": [
"\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
"\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
"YOLOv5 🚀 v6.2-25
1-g241d798
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"YOLOv5 🚀 v6.2-25
7-g2ecaa96
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"\n",
"\n",
"Fusing layers... \n",
"Fusing layers... \n",
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning
'/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1420.92
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning
/content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1409.04
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:5
4<00:00, 1.37
it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:5
3<00:00, 1.38
it/s]\n",
" all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319\n",
" all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319\n",
"Speed: 0.
9ms pre-process, 3.9ms inference, 3.0
ms NMS per image at shape (32, 3, 640, 640)\n",
"Speed: 0.
8ms pre-process, 4.0ms inference, 2.8
ms NMS per image at shape (32, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
"Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
]
]
}
}
...
@@ -273,27 +270,24 @@
...
@@ -273,27 +270,24 @@
"base_uri": "https://localhost:8080/"
"base_uri": "https://localhost:8080/"
},
},
"id": "1NcFxRcFdJ_O",
"id": "1NcFxRcFdJ_O",
"outputId": "
8e349df5-9910-4a91-a845-748def15d3d7
"
"outputId": "
2cdb19cc-69af-4c90-f8de-af02dfedba91
"
},
},
"outputs": [
"outputs": [
{
{
"metadata": {
"tags": null
},
"name": "stdout",
"output_type": "stream",
"output_type": "stream",
"name": "stdout",
"text": [
"text": [
"\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
"\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 🚀 v6.2-25
1-g241d798
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"YOLOv5 🚀 v6.2-25
7-g2ecaa96
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
"\n",
"\n",
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
"Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
"Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
"100% 6.79M/6.79M [00:01<00:00,
4.42
MB/s]\n",
"100% 6.79M/6.79M [00:01<00:00,
5.87
MB/s]\n",
"Dataset download success ✅ (2.
8
s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"Dataset download success ✅ (2.
1
s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"\n",
"\n",
" from n params module arguments \n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
...
@@ -327,11 +321,11 @@
...
@@ -327,11 +321,11 @@
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning
'/content/datasets/coco128-seg/labels/train2017' images and labels...126 found, 2 missing, 0 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 1383.68
it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning
/content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1439.54
it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 2
41.77
it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 2
53.53
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning
'/content/datasets/coco128-seg/labels/train2017.cache' images and labels... 126 found, 2 missing, 0 empty
, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning
/content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds
, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 9
2.38
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 9
3.82
it/s]\n",
"\n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
"Plotting labels to runs/train-seg/exp/labels.jpg... \n",
"Plotting labels to runs/train-seg/exp/labels.jpg... \n",
...
@@ -341,18 +335,18 @@
...
@@ -341,18 +335,18 @@
"Starting training for 3 epochs...\n",
"Starting training for 3 epochs...\n",
"\n",
"\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" 0/2 4.92G 0.0417 0.04646 0.06066 0.02126 192 640: 100% 8/8 [00:07<00:00, 1.1
3
it/s]\n",
" 0/2 4.92G 0.0417 0.04646 0.06066 0.02126 192 640: 100% 8/8 [00:07<00:00, 1.1
1
it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.
79
it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.
85
it/s]\n",
" all 128 929 0.737 0.649 0.715 0.492 0.719 0.617 0.658 0.408\n",
" all 128 929 0.737 0.649 0.715 0.492 0.719 0.617 0.658 0.408\n",
"\n",
"\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" 1/2 6.29G 0.04157 0.04503 0.05772 0.01777 208 640: 100% 8/8 [00:09<00:00, 1.1
8
s/it]\n",
" 1/2 6.29G 0.04157 0.04503 0.05772 0.01777 208 640: 100% 8/8 [00:09<00:00, 1.1
9
s/it]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.
8
5it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.
7
5it/s]\n",
" all 128 929 0.756 0.674 0.738 0.506 0.725 0.64 0.68 0.422\n",
" all 128 929 0.756 0.674 0.738 0.506 0.725 0.64 0.68 0.422\n",
"\n",
"\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" 2/2 6.29G 0.0425 0.04793 0.06784 0.01863 161 640: 100% 8/8 [00:0
3<00:00, 2.04
it/s]\n",
" 2/2 6.29G 0.0425 0.04793 0.06784 0.01863 161 640: 100% 8/8 [00:0
4<00:00, 1.99
it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.
55
it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.
81
it/s]\n",
" all 128 929 0.736 0.694 0.747 0.522 0.769 0.622 0.683 0.427\n",
" all 128 929 0.736 0.694 0.747 0.522 0.769 0.622 0.683 0.427\n",
"\n",
"\n",
"3 epochs completed in 0.008 hours.\n",
"3 epochs completed in 0.008 hours.\n",
...
@@ -362,7 +356,7 @@
...
@@ -362,7 +356,7 @@
"Validating runs/train-seg/exp/weights/best.pt...\n",
"Validating runs/train-seg/exp/weights/best.pt...\n",
"Fusing layers... \n",
"Fusing layers... \n",
"Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
"Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:06<00:00, 1.5
5
s/it]\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:06<00:00, 1.5
8
s/it]\n",
" all 128 929 0.738 0.694 0.746 0.522 0.759 0.625 0.682 0.426\n",
" all 128 929 0.738 0.694 0.746 0.522 0.759 0.625 0.682 0.426\n",
" person 128 254 0.845 0.756 0.836 0.55 0.861 0.669 0.759 0.407\n",
" person 128 254 0.845 0.756 0.836 0.55 0.861 0.669 0.759 0.407\n",
" bicycle 128 6 0.475 0.333 0.549 0.341 0.711 0.333 0.526 0.322\n",
" bicycle 128 6 0.475 0.333 0.549 0.341 0.711 0.333 0.526 0.322\n",
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论