Unverified 提交 85d7ae21 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

Rename onnx_dynamic -> dynamic (#9168)

上级 f2b8f3fe
...@@ -489,7 +489,7 @@ def run( ...@@ -489,7 +489,7 @@ def run(
for k, m in model.named_modules(): for k, m in model.named_modules():
if isinstance(m, Detect): if isinstance(m, Detect):
m.inplace = inplace m.inplace = inplace
m.onnx_dynamic = dynamic m.dynamic = dynamic
m.export = True m.export = True
for _ in range(2): for _ in range(2):
......
...@@ -37,7 +37,7 @@ except ImportError: ...@@ -37,7 +37,7 @@ except ImportError:
class Detect(nn.Module): class Detect(nn.Module):
stride = None # strides computed during build stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter dynamic = False # force grid reconstruction
export = False # export mode export = False # export mode
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
...@@ -60,7 +60,7 @@ class Detect(nn.Module): ...@@ -60,7 +60,7 @@ class Detect(nn.Module):
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid() y = x[i].sigmoid()
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论