Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
946765bb
提交
946765bb
authored
11月 18, 2022
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Created using Colaboratory
上级
241d798b
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
143 行增加
和
498 行删除
+143
-498
tutorial.ipynb
segment/tutorial.ipynb
+143
-498
没有找到文件。
segment/tutorial.ipynb
浏览文件 @
946765bb
...
...
@@ -36,27 +36,27 @@
},
{
"cell_type": "code",
"execution_count": 2
,
"execution_count": 1
,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wbvMlHd_QwMG",
"outputId": "0f9ee467-cea4-48e8-9050-7a76ae1b6141
"
"outputId": "d1e33dfc-9ad4-436e-f1e5-01acee40c029
"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"name": "stderr",
"text": [
"YOLOv5 🚀 v6.2-225-gf223cb2 Python-3.7.12 torch-1.12.1+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16161
MiB)\n"
"YOLOv5 🚀 v6.2-251-g241d798 Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110
MiB)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"name": "stdout",
"text": [
"Setup complete ✅ (4 CPUs, 14.7 GB RAM, 107.3/196.6
GB disk)\n"
"Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2
GB disk)\n"
]
}
],
...
...
@@ -94,27 +94,30 @@
},
{
"cell_type": "code",
"execution_count": 3
,
"execution_count": 2
,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "zR9ZbuQCH7FX",
"outputId": "60647b99-e8d4-402c-f444-331bf6746da4
"
"outputId": "e206fcec-cf42-4754-8a42-39bc3603eba8
"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
"YOLOv5 🚀 v6.2-225-gf223cb2 Python-3.7.12 torch-1.12.1+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16161MiB)\n",
"YOLOv5 🚀 v6.2-251-g241d798 Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-seg.pt to yolov5s-seg.pt...\n",
"100% 14.9M/14.9M [00:03<00:00, 3.93MB/s]\n",
"\n",
"Fusing layers... \n",
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
"image 1/2 /home/paguerrie/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 5.6
ms\n",
"image 2/2 /home/paguerrie/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 5.5
ms\n",
"Speed: 0.4ms pre-process, 5.6ms inference, 1.1
ms NMS per image at shape (1, 3, 640, 640)\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 17.2
ms\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.7
ms\n",
"Speed: 0.4ms pre-process, 15.5ms inference, 22.2
ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
]
}
...
...
@@ -146,82 +149,66 @@
},
{
"cell_type": "code",
"execution_count": 4
,
"execution_count": 3
,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"9b8caa3522fc4cbab31e13b5dfc7808d",
"574140e4c4bc48c9a171541a02cd0211",
"35e03ce5090346c9ae602891470fc555",
"c942c208e72d46568b476bb0f2d75496",
"65881db1db8a4e9c930fab9172d45143",
"60b913d755b34d638478e30705a2dde1",
"0856bea36ec148b68522ff9c9eb258d8",
"76879f6f2aa54637a7a07faeea2bd684",
"0ace3934ec6f4d36a1b3a9e086390926",
"d6b7a2243e0c4beca714d99dceec23d6",
"5966ba6e6f114d8c9d8d1d6b1bd4f4c7"
]
"base_uri": "https://localhost:8080/"
},
"id": "WQPtK1QYVaD_",
"outputId": "102dabed-bc31-42fe-9133-d9ce28a2c01e
"
"outputId": "f7eba0ae-49d1-405b-a1cf-169212fadc2c
"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "89f5f0a84ca642378724f1bf05f17e0d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0.00/6.79M [00:00<?, ?B/s]"
"output_type": "stream",
"name": "stdout",
"text": [
"Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip ...\n",
"Downloading http://images.cocodataset.org/zips/val2017.zip ...\n",
"######################################################################## 100.0%\n",
"######################################################################## 100.0%\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Download COCO val\n",
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco128-seg.zip', 'tmp.zip') # download (780M - 5000 images)\n",
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip # unzip"
"!bash data/scripts/get_coco.sh --val --segments # download (780M - 5000 images)"
]
},
{
"cell_type": "code",
"execution_count": 5
,
"execution_count": 4
,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "X58w8JLpMnjH",
"outputId": "daf60b1b-b098-4657-c863-584f4c9cf078
"
"outputId": "73533135-6995-4f2d-adb0-3acb5ef9b300
"
},
"outputs": [
{
"metadata": {
"tags": null
},
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/home/paguerrie/yolov5/data/coco128-seg
.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
"YOLOv5 🚀 v6.2-225-gf223cb2 Python-3.7.12 torch-1.12.1+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16161
MiB)\n",
"\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco
.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
"YOLOv5 🚀 v6.2-251-g241d798 Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110
MiB)\n",
"\n",
"Fusing layers... \n",
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/home/paguerrie/datasets/coco128-seg/labels/train2017' images and\u001b[0m
\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /home/paguerrie/datasets/coco128-seg/labels/train
2017.cache\n",
" Class Images Instances Box(P R mAP50 m
\n",
" all 128 929 0.711 0.651 0.711 0.488 0.678 0.628 0.66 0.403
\n",
"Speed: 3.2ms pre-process, 2.7ms inference, 6.5
ms NMS per image at shape (32, 3, 640, 640)\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1420.92it/s]
\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val
2017.cache\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:54<00:00, 1.37it/s]
\n",
" all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319
\n",
"Speed: 0.9ms pre-process, 3.9ms inference, 3.0
ms NMS per image at shape (32, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
]
}
],
"source": [
"# Validate YOLOv5s-seg on COCO val\n",
"!python segment/val.py --weights yolov5s-seg.pt --data coco128-seg
.yaml --img 640 --half"
"!python segment/val.py --weights yolov5s-seg.pt --data coco
.yaml --img 640 --half"
]
},
{
...
...
@@ -275,31 +262,39 @@
" %pip install -q comet_ml\n",
" import comet_ml; comet_ml.init()\n",
"elif logger == 'ClearML':\n",
" %pip install -q clearml && clearml-init
"
" import clearml; clearml.browser_login()
"
]
},
{
"cell_type": "code",
"execution_count": 7
,
"execution_count": 5
,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1NcFxRcFdJ_O",
"outputId": "baa6d4be-3379-4aab-844a-d5a5396c0e49
"
"outputId": "8e349df5-9910-4a91-a845-748def15d3d7
"
},
"outputs": [
{
"metadata": {
"tags": null
},
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 🚀 v6.2-225-gf223cb2 Python-3.7.12 torch-1.12.1+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16161
MiB)\n",
"YOLOv5 🚀 v6.2-251-g241d798 Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110
MiB)\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
"\n",
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
"Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
"100% 6.79M/6.79M [00:01<00:00, 4.42MB/s]\n",
"Dataset download success ✅ (2.8s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
...
...
@@ -331,119 +326,115 @@
"Transferred 367/367 items from yolov5s-seg.pt\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/home/paguerrie/datasets/coco128-seg/labels/train2017.cache' im\u001b[0m\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100%|██████████| 128/128 [00:00<00:00, 544.41\u001b[0m\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/home/paguerrie/datasets/coco128-seg/labels/train2017.cache' imag\u001b[0m\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100%|██████████| 128/128 [00:00<00:00, 138.66it\u001b[0m\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128-seg/labels/train2017' images and labels...126 found, 2 missing, 0 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 1383.68it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 241.77it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128-seg/labels/train2017.cache' images and labels... 126 found, 2 missing, 0 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 92.38it/s]\n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
"Plotting labels to runs/train-seg/exp/labels.jpg... \n",
"Image sizes 640 train, 640 val\n",
"Using 4
dataloader workers\n",
"Using 2
dataloader workers\n",
"Logging results to \u001b[1mruns/train-seg/exp\u001b[0m\n",
"Starting training for 3 epochs...\n",
"\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" 0/2 4.67G 0.04464 0.05134 0.06548 0.01895 219
\n",
" Class Images Instances Box(P R mAP50 m
\n",
" all 128 929 0.727 0.661 0.725 0.496 0.688 0.629 0.673 0.413
\n",
" 0/2 4.92G 0.0417 0.04646 0.06066 0.02126 192 640: 100% 8/8 [00:07<00:00, 1.13it/s]
\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.79it/s]
\n",
" all 128 929 0.737 0.649 0.715 0.492 0.719 0.617 0.658 0.408
\n",
"\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" 1/2 6.36G 0.04102 0.04702 0.06873 0.01734 263
\n",
" Class Images Instances Box(P R mAP50 m
\n",
" all 128 929 0.752 0.676 0.743 0.51 0.704 0.64 0.682 0.425
\n",
" 1/2 6.29G 0.04157 0.04503 0.05772 0.01777 208 640: 100% 8/8 [00:09<00:00, 1.18s/it]
\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.85it/s]
\n",
" all 128 929 0.756 0.674 0.738 0.506 0.725 0.64 0.68 0.422
\n",
"\n",
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
" 2/2 6.36G 0.0421 0.04463 0.05951 0.01746 245
\n",
" Class Images Instances Box(P R mAP50 m
\n",
" all 128 929 0.776 0.674 0.757 0.514 0.72 0.632 0.684 0.429
\n",
" 2/2 6.29G 0.0425 0.04793 0.06784 0.01863 161 640: 100% 8/8 [00:03<00:00, 2.04it/s]
\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.55it/s]
\n",
" all 128 929 0.736 0.694 0.747 0.522 0.769 0.622 0.683 0.427
\n",
"\n",
"3 epochs completed in 0.006
hours.\n",
"3 epochs completed in 0.008
hours.\n",
"Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB\n",
"Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB\n",
"\n",
"Validating runs/train-seg/exp/weights/best.pt...\n",
"Fusing layers... \n",
"Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
" Class Images Instances Box(P R mAP50 m\n",
" all 128 929 0.775 0.673 0.758 0.515 0.72 0.632 0.684 0.427\n",
" person 128 254 0.829 0.745 0.833 0.545 0.776 0.697 0.764 0.406\n",
" bicycle 128 6 0.614 0.333 0.539 0.331 0.614 0.333 0.531 0.308\n",
" car 128 46 0.774 0.413 0.571 0.266 0.693 0.37 0.493 0.204\n",
" motorcycle 128 5 0.817 0.901 0.895 0.678 0.817 0.901 0.895 0.47\n",
" airplane 128 6 1 0.951 0.995 0.71 0.882 0.833 0.839 0.515\n",
" bus 128 7 0.695 0.714 0.757 0.661 0.695 0.714 0.757 0.627\n",
" train 128 3 1 0.935 0.995 0.566 1 0.935 0.995 0.731\n",
" truck 128 12 0.741 0.417 0.463 0.283 0.741 0.417 0.4 0.27\n",
" boat 128 6 0.653 0.32 0.452 0.17 0.653 0.32 0.328 0.149\n",
" traffic light 128 14 0.627 0.36 0.527 0.234 0.503 0.289 0.409 0.293\n",
" stop sign 128 2 0.829 1 0.995 0.747 0.829 1 0.995 0.821\n",
" bench 128 9 0.822 0.667 0.76 0.414 0.685 0.556 0.678 0.228\n",
" bird 128 16 0.967 1 0.995 0.675 0.906 0.938 0.909 0.516\n",
" cat 128 4 0.778 0.89 0.945 0.728 0.778 0.89 0.945 0.69\n",
" dog 128 9 1 0.65 0.973 0.697 1 0.65 0.939 0.615\n",
" horse 128 2 0.727 1 0.995 0.672 0.727 1 0.995 0.2\n",
" elephant 128 17 1 0.912 0.946 0.704 0.871 0.794 0.822 0.565\n",
" bear 128 1 0.626 1 0.995 0.895 0.626 1 0.995 0.895\n",
" zebra 128 4 0.865 1 0.995 0.934 0.865 1 0.995 0.822\n",
" giraffe 128 9 0.975 1 0.995 0.672 0.866 0.889 0.876 0.473\n",
" backpack 128 6 1 0.573 0.707 0.38 0.891 0.5 0.524 0.249\n",
" umbrella 128 18 0.744 0.889 0.926 0.552 0.465 0.556 0.483 0.262\n",
" handbag 128 19 0.799 0.209 0.432 0.225 0.799 0.209 0.403 0.201\n",
" tie 128 7 0.968 0.857 0.857 0.53 0.968 0.857 0.857 0.519\n",
" suitcase 128 4 0.821 1 0.995 0.696 0.821 1 0.995 0.665\n",
" frisbee 128 5 0.777 0.8 0.761 0.613 0.777 0.8 0.761 0.558\n",
" skis 128 1 0.721 1 0.995 0.497 0.721 1 0.995 0.398\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" snowboard 128 7 0.851 0.857 0.887 0.599 0.284 0.286 0.253 0.151\n",
" sports ball 128 6 0.961 0.667 0.687 0.429 0.721 0.5 0.481 0.476\n",
" kite 128 10 0.508 0.312 0.48 0.238 0.508 0.312 0.406 0.122\n",
" baseball bat 128 4 0.331 0.5 0.526 0.249 0.331 0.5 0.376 0.102\n",
" baseball glove 128 7 0.876 0.571 0.579 0.282 0.657 0.429 0.429 0.343\n",
" skateboard 128 5 1 0.697 0.824 0.471 0.707 0.497 0.552 0.299\n",
" tennis racket 128 7 0.524 0.714 0.646 0.426 0.524 0.714 0.646 0.452\n",
" bottle 128 18 0.657 0.389 0.531 0.359 0.657 0.389 0.569 0.362\n",
" wine glass 128 16 0.752 0.938 0.924 0.435 0.451 0.562 0.568 0.341\n",
" cup 128 36 0.859 0.676 0.848 0.503 0.823 0.648 0.793 0.496\n",
" fork 128 6 0.904 0.333 0.462 0.309 0.452 0.167 0.195 0.107\n",
" knife 128 16 0.749 0.5 0.665 0.413 0.655 0.438 0.523 0.314\n",
" spoon 128 22 0.787 0.409 0.577 0.275 0.787 0.409 0.528 0.236\n",
" bowl 128 28 0.793 0.679 0.744 0.577 0.751 0.643 0.688 0.366\n",
" banana 128 1 0.931 1 0.995 0.398 0.931 1 0.995 0.497\n",
" sandwich 128 2 1 0 0.828 0.713 1 0 0.498 0.449\n",
" orange 128 4 0.588 1 0.995 0.666 0.588 1 0.995 0.672\n",
" broccoli 128 11 0.563 0.455 0.356 0.258 0.563 0.455 0.362 0.259\n",
" carrot 128 24 0.683 0.75 0.753 0.489 0.758 0.833 0.835 0.451\n",
" hot dog 128 2 0.583 1 0.995 0.995 0.583 1 0.995 0.796\n",
" pizza 128 5 0.801 0.8 0.962 0.644 0.801 0.8 0.962 0.583\n",
" donut 128 14 0.704 1 0.889 0.759 0.704 1 0.889 0.683\n",
" cake 128 4 0.904 1 0.995 0.896 0.904 1 0.995 0.838\n",
" chair 128 35 0.672 0.543 0.629 0.333 0.708 0.571 0.583 0.284\n",
" couch 128 6 0.827 0.5 0.821 0.583 0.827 0.5 0.681 0.352\n",
" potted plant 128 14 0.809 0.908 0.884 0.584 0.809 0.908 0.884 0.474\n",
" bed 128 3 1 0.654 0.913 0.36 1 0.654 0.913 0.418\n",
" dining table 128 13 0.803 0.385 0.557 0.361 0.321 0.154 0.126 0.0487\n",
" toilet 128 2 0.802 1 0.995 0.921 0.802 1 0.995 0.698\n",
" tv 128 2 0.59 1 0.995 0.846 0.59 1 0.995 0.846\n",
" laptop 128 3 1 0 0.451 0.324 1 0 0.372 0.157\n",
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:06<00:00, 1.55s/it]\n",
" all 128 929 0.738 0.694 0.746 0.522 0.759 0.625 0.682 0.426\n",
" person 128 254 0.845 0.756 0.836 0.55 0.861 0.669 0.759 0.407\n",
" bicycle 128 6 0.475 0.333 0.549 0.341 0.711 0.333 0.526 0.322\n",
" car 128 46 0.612 0.565 0.539 0.257 0.555 0.435 0.477 0.171\n",
" motorcycle 128 5 0.73 0.8 0.752 0.571 0.747 0.8 0.752 0.42\n",
" airplane 128 6 1 0.943 0.995 0.732 0.92 0.833 0.839 0.555\n",
" bus 128 7 0.677 0.714 0.722 0.653 0.711 0.714 0.722 0.593\n",
" train 128 3 1 0.951 0.995 0.551 1 0.884 0.995 0.781\n",
" truck 128 12 0.555 0.417 0.457 0.285 0.624 0.417 0.397 0.277\n",
" boat 128 6 0.624 0.5 0.584 0.186 1 0.326 0.412 0.133\n",
" traffic light 128 14 0.513 0.302 0.411 0.247 0.435 0.214 0.376 0.251\n",
" stop sign 128 2 0.824 1 0.995 0.796 0.906 1 0.995 0.747\n",
" bench 128 9 0.75 0.667 0.763 0.367 0.724 0.585 0.698 0.209\n",
" bird 128 16 0.961 1 0.995 0.686 0.918 0.938 0.91 0.525\n",
" cat 128 4 0.771 0.857 0.945 0.752 0.76 0.8 0.945 0.728\n",
" dog 128 9 0.987 0.778 0.963 0.681 1 0.705 0.89 0.574\n",
" horse 128 2 0.703 1 0.995 0.697 0.759 1 0.995 0.249\n",
" elephant 128 17 0.916 0.882 0.93 0.691 0.811 0.765 0.829 0.537\n",
" bear 128 1 0.664 1 0.995 0.995 0.701 1 0.995 0.895\n",
" zebra 128 4 0.864 1 0.995 0.921 0.879 1 0.995 0.804\n",
" giraffe 128 9 0.883 0.889 0.94 0.683 0.845 0.778 0.78 0.463\n",
" backpack 128 6 1 0.59 0.701 0.372 1 0.474 0.52 0.252\n",
" umbrella 128 18 0.654 0.839 0.887 0.52 0.517 0.556 0.427 0.229\n",
" handbag 128 19 0.54 0.211 0.408 0.221 0.796 0.206 0.396 0.196\n",
" tie 128 7 0.864 0.857 0.857 0.577 0.925 0.857 0.857 0.534\n",
" suitcase 128 4 0.716 1 0.945 0.647 0.767 1 0.945 0.634\n",
" frisbee 128 5 0.708 0.8 0.761 0.643 0.737 0.8 0.761 0.501\n",
" skis 128 1 0.691 1 0.995 0.796 0.761 1 0.995 0.199\n",
" snowboard 128 7 0.918 0.857 0.904 0.604 0.32 0.286 0.235 0.137\n",
" sports ball 128 6 0.902 0.667 0.701 0.466 0.727 0.5 0.497 0.471\n",
" kite 128 10 0.586 0.4 0.511 0.231 0.663 0.394 0.417 0.139\n",
" baseball bat 128 4 0.359 0.5 0.401 0.169 0.631 0.5 0.526 0.133\n",
" baseball glove 128 7 1 0.519 0.58 0.327 0.687 0.286 0.455 0.328\n",
" skateboard 128 5 0.729 0.8 0.862 0.631 0.599 0.6 0.604 0.379\n",
" tennis racket 128 7 0.57 0.714 0.645 0.448 0.608 0.714 0.645 0.412\n",
" bottle 128 18 0.469 0.393 0.537 0.357 0.661 0.389 0.543 0.349\n",
" wine glass 128 16 0.677 0.938 0.866 0.441 0.53 0.625 0.67 0.334\n",
" cup 128 36 0.777 0.722 0.812 0.466 0.725 0.583 0.762 0.467\n",
" fork 128 6 0.948 0.333 0.425 0.27 0.527 0.167 0.18 0.102\n",
" knife 128 16 0.757 0.587 0.669 0.458 0.79 0.5 0.552 0.34\n",
" spoon 128 22 0.74 0.364 0.559 0.269 0.925 0.364 0.513 0.213\n",
" bowl 128 28 0.766 0.714 0.725 0.559 0.803 0.584 0.665 0.353\n",
" banana 128 1 0.408 1 0.995 0.398 0.539 1 0.995 0.497\n",
" sandwich 128 2 1 0 0.695 0.536 1 0 0.498 0.448\n",
" orange 128 4 0.467 1 0.995 0.693 0.518 1 0.995 0.663\n",
" broccoli 128 11 0.462 0.455 0.383 0.259 0.548 0.455 0.384 0.256\n",
" carrot 128 24 0.631 0.875 0.77 0.533 0.757 0.909 0.853 0.499\n",
" hot dog 128 2 0.555 1 0.995 0.995 0.578 1 0.995 0.796\n",
" pizza 128 5 0.89 0.8 0.962 0.796 1 0.778 0.962 0.766\n",
" donut 128 14 0.695 1 0.893 0.772 0.704 1 0.893 0.696\n",
" cake 128 4 0.826 1 0.995 0.92 0.862 1 0.995 0.846\n",
" chair 128 35 0.53 0.571 0.613 0.336 0.67 0.6 0.538 0.271\n",
" couch 128 6 0.972 0.667 0.833 0.627 1 0.62 0.696 0.394\n",
" potted plant 128 14 0.7 0.857 0.883 0.552 0.836 0.857 0.883 0.473\n",
" bed 128 3 0.979 0.667 0.83 0.366 1 0 0.83 0.373\n",
" dining table 128 13 0.775 0.308 0.505 0.364 0.644 0.231 0.25 0.0804\n",
" toilet 128 2 0.836 1 0.995 0.846 0.887 1 0.995 0.797\n",
" tv 128 2 0.6 1 0.995 0.846 0.655 1 0.995 0.896\n",
" laptop 128 3 0.822 0.333 0.445 0.307 1 0 0.392 0.12\n",
" mouse 128 2 1 0 0 0 1 0 0 0\n",
" remote 128 8 0.831 0.5 0.625 0.495 0.831 0.5 0.629 0.436
\n",
" cell phone 128 8 0.867 0.375 0.482 0.26 0.578 0.25 0.302 0.127
\n",
" microwave 128 3 0.782 1 0.995 0.695 0.782 1 0.995 0.585
\n",
" oven 128 5 0.389 0.4 0.432 0.299 0.584 0.6 0.642 0.411
\n",
" sink 128 6 0.657 0.5 0.491 0.373 0.657 0.5 0.436 0.303
\n",
" refrigerator 128 5 0.729 0.8 0.778 0.547 0.729 0.8 0.778 0.496
\n",
" book 128 29 0.77 0.231 0.451 0.186 0.77 0.231 0.399 0.136
\n",
" clock 128 9 0.798 0.889 0.956 0.747 0.798 0.889 0.926 0.68
\n",
" vase 128 2 0.437 1 0.995 0.895 0.437
1 0.995 0.796\n",
" scissors 128 1 0 0 0.0226 0.0113 0
0 0 0\n",
" teddy bear 128 21 0.815 0.629 0.877 0.521 0.753 0.582 0.793 0.435
\n",
" toothbrush 128 5 1 0.719 0.995 0.737 1 0.719 0.995 0.606
\n",
" remote 128 8 0.745 0.5 0.62 0.459 0.821 0.5 0.624 0.449
\n",
" cell phone 128 8 0.686 0.375 0.502 0.272 0.488 0.25 0.28 0.132
\n",
" microwave 128 3 0.831 1 0.995 0.722 0.867 1 0.995 0.592
\n",
" oven 128 5 0.439 0.4 0.435 0.294 0.823 0.6 0.645 0.418
\n",
" sink 128 6 0.677 0.5 0.565 0.448 0.722 0.5 0.46 0.362
\n",
" refrigerator 128 5 0.533 0.8 0.783 0.524 0.558 0.8 0.783 0.527
\n",
" book 128 29 0.732 0.379 0.423 0.196 0.69 0.207 0.38 0.131
\n",
" clock 128 9 0.889 0.778 0.917 0.677 0.908 0.778 0.875 0.604
\n",
" vase 128 2 0.375 1 0.995 0.995 0.455
1 0.995 0.796\n",
" scissors 128 1 1 0 0.0166 0.00166 1
0 0 0\n",
" teddy bear 128 21 0.813 0.829 0.841 0.457 0.826 0.678 0.786 0.422
\n",
" toothbrush 128 5 0.806 1 0.995 0.733 0.991 1 0.995 0.628
\n",
"Results saved to \u001b[1mruns/train-seg/exp\u001b[0m\n"
]
}
...
...
@@ -581,7 +572,6 @@
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"machine_shape": "hm",
"name": "YOLOv5 Tutorial",
"provenance": [],
...
...
@@ -603,354 +593,8 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.12"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0856bea36ec148b68522ff9c9eb258d8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"0ace3934ec6f4d36a1b3a9e086390926": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"35e03ce5090346c9ae602891470fc555": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_76879f6f2aa54637a7a07faeea2bd684",
"max": 818322941,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_0ace3934ec6f4d36a1b3a9e086390926",
"value": 818322941
}
},
"574140e4c4bc48c9a171541a02cd0211": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_60b913d755b34d638478e30705a2dde1",
"placeholder": "",
"style": "IPY_MODEL_0856bea36ec148b68522ff9c9eb258d8",
"value": "100%"
}
},
"5966ba6e6f114d8c9d8d1d6b1bd4f4c7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"60b913d755b34d638478e30705a2dde1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"65881db1db8a4e9c930fab9172d45143": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"76879f6f2aa54637a7a07faeea2bd684": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9b8caa3522fc4cbab31e13b5dfc7808d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_574140e4c4bc48c9a171541a02cd0211",
"IPY_MODEL_35e03ce5090346c9ae602891470fc555",
"IPY_MODEL_c942c208e72d46568b476bb0f2d75496"
],
"layout": "IPY_MODEL_65881db1db8a4e9c930fab9172d45143"
}
},
"c942c208e72d46568b476bb0f2d75496": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d6b7a2243e0c4beca714d99dceec23d6",
"placeholder": "",
"style": "IPY_MODEL_5966ba6e6f114d8c9d8d1d6b1bd4f4c7",
"value": " 780M/780M [02:19<00:00, 6.24MB/s]"
}
},
"d6b7a2243e0c4beca714d99dceec23d6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 1
"nbformat_minor": 0
}
\ No newline at end of file
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论