Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
9e8fb9fd
Unverified
提交
9e8fb9fd
authored
7月 04, 2021
作者:
Glenn Jocher
提交者:
GitHub
7月 04, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Create `utils/augmentations.py` (#3877)
* Create `utils/augmentations.py` * cleanup
上级
81b31824
显示空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
250 行增加
和
235 行删除
+250
-235
augmentations.py
utils/augmentations.py
+244
-0
datasets.py
utils/datasets.py
+6
-235
没有找到文件。
utils/augmentations.py
0 → 100644
浏览文件 @
9e8fb9fd
# YOLOv5 image augmentation functions
import
random
import
cv2
import
math
import
numpy
as
np
from
utils.general
import
segment2box
,
resample_segments
from
utils.metrics
import
bbox_ioa
def
augment_hsv
(
im
,
hgain
=
0.5
,
sgain
=
0.5
,
vgain
=
0.5
):
# HSV color-space augmentation
if
hgain
or
sgain
or
vgain
:
r
=
np
.
random
.
uniform
(
-
1
,
1
,
3
)
*
[
hgain
,
sgain
,
vgain
]
+
1
# random gains
hue
,
sat
,
val
=
cv2
.
split
(
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2HSV
))
dtype
=
im
.
dtype
# uint8
x
=
np
.
arange
(
0
,
256
,
dtype
=
r
.
dtype
)
lut_hue
=
((
x
*
r
[
0
])
%
180
)
.
astype
(
dtype
)
lut_sat
=
np
.
clip
(
x
*
r
[
1
],
0
,
255
)
.
astype
(
dtype
)
lut_val
=
np
.
clip
(
x
*
r
[
2
],
0
,
255
)
.
astype
(
dtype
)
img_hsv
=
cv2
.
merge
((
cv2
.
LUT
(
hue
,
lut_hue
),
cv2
.
LUT
(
sat
,
lut_sat
),
cv2
.
LUT
(
val
,
lut_val
)))
cv2
.
cvtColor
(
img_hsv
,
cv2
.
COLOR_HSV2BGR
,
dst
=
im
)
# no return needed
def
hist_equalize
(
im
,
clahe
=
True
,
bgr
=
False
):
# Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
yuv
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2YUV
if
bgr
else
cv2
.
COLOR_RGB2YUV
)
if
clahe
:
c
=
cv2
.
createCLAHE
(
clipLimit
=
2.0
,
tileGridSize
=
(
8
,
8
))
yuv
[:,
:,
0
]
=
c
.
apply
(
yuv
[:,
:,
0
])
else
:
yuv
[:,
:,
0
]
=
cv2
.
equalizeHist
(
yuv
[:,
:,
0
])
# equalize Y channel histogram
return
cv2
.
cvtColor
(
yuv
,
cv2
.
COLOR_YUV2BGR
if
bgr
else
cv2
.
COLOR_YUV2RGB
)
# convert YUV image to RGB
def
replicate
(
im
,
labels
):
# Replicate labels
h
,
w
=
im
.
shape
[:
2
]
boxes
=
labels
[:,
1
:]
.
astype
(
int
)
x1
,
y1
,
x2
,
y2
=
boxes
.
T
s
=
((
x2
-
x1
)
+
(
y2
-
y1
))
/
2
# side length (pixels)
for
i
in
s
.
argsort
()[:
round
(
s
.
size
*
0.5
)]:
# smallest indices
x1b
,
y1b
,
x2b
,
y2b
=
boxes
[
i
]
bh
,
bw
=
y2b
-
y1b
,
x2b
-
x1b
yc
,
xc
=
int
(
random
.
uniform
(
0
,
h
-
bh
)),
int
(
random
.
uniform
(
0
,
w
-
bw
))
# offset x, y
x1a
,
y1a
,
x2a
,
y2a
=
[
xc
,
yc
,
xc
+
bw
,
yc
+
bh
]
im
[
y1a
:
y2a
,
x1a
:
x2a
]
=
im
[
y1b
:
y2b
,
x1b
:
x2b
]
# img4[ymin:ymax, xmin:xmax]
labels
=
np
.
append
(
labels
,
[[
labels
[
i
,
0
],
x1a
,
y1a
,
x2a
,
y2a
]],
axis
=
0
)
return
im
,
labels
def
letterbox
(
im
,
new_shape
=
(
640
,
640
),
color
=
(
114
,
114
,
114
),
auto
=
True
,
scaleFill
=
False
,
scaleup
=
True
,
stride
=
32
):
# Resize and pad image while meeting stride-multiple constraints
shape
=
im
.
shape
[:
2
]
# current shape [height, width]
if
isinstance
(
new_shape
,
int
):
new_shape
=
(
new_shape
,
new_shape
)
# Scale ratio (new / old)
r
=
min
(
new_shape
[
0
]
/
shape
[
0
],
new_shape
[
1
]
/
shape
[
1
])
if
not
scaleup
:
# only scale down, do not scale up (for better test mAP)
r
=
min
(
r
,
1.0
)
# Compute padding
ratio
=
r
,
r
# width, height ratios
new_unpad
=
int
(
round
(
shape
[
1
]
*
r
)),
int
(
round
(
shape
[
0
]
*
r
))
dw
,
dh
=
new_shape
[
1
]
-
new_unpad
[
0
],
new_shape
[
0
]
-
new_unpad
[
1
]
# wh padding
if
auto
:
# minimum rectangle
dw
,
dh
=
np
.
mod
(
dw
,
stride
),
np
.
mod
(
dh
,
stride
)
# wh padding
elif
scaleFill
:
# stretch
dw
,
dh
=
0.0
,
0.0
new_unpad
=
(
new_shape
[
1
],
new_shape
[
0
])
ratio
=
new_shape
[
1
]
/
shape
[
1
],
new_shape
[
0
]
/
shape
[
0
]
# width, height ratios
dw
/=
2
# divide padding into 2 sides
dh
/=
2
if
shape
[::
-
1
]
!=
new_unpad
:
# resize
im
=
cv2
.
resize
(
im
,
new_unpad
,
interpolation
=
cv2
.
INTER_LINEAR
)
top
,
bottom
=
int
(
round
(
dh
-
0.1
)),
int
(
round
(
dh
+
0.1
))
left
,
right
=
int
(
round
(
dw
-
0.1
)),
int
(
round
(
dw
+
0.1
))
im
=
cv2
.
copyMakeBorder
(
im
,
top
,
bottom
,
left
,
right
,
cv2
.
BORDER_CONSTANT
,
value
=
color
)
# add border
return
im
,
ratio
,
(
dw
,
dh
)
def
random_perspective
(
im
,
targets
=
(),
segments
=
(),
degrees
=
10
,
translate
=.
1
,
scale
=.
1
,
shear
=
10
,
perspective
=
0.0
,
border
=
(
0
,
0
)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
height
=
im
.
shape
[
0
]
+
border
[
0
]
*
2
# shape(h,w,c)
width
=
im
.
shape
[
1
]
+
border
[
1
]
*
2
# Center
C
=
np
.
eye
(
3
)
C
[
0
,
2
]
=
-
im
.
shape
[
1
]
/
2
# x translation (pixels)
C
[
1
,
2
]
=
-
im
.
shape
[
0
]
/
2
# y translation (pixels)
# Perspective
P
=
np
.
eye
(
3
)
P
[
2
,
0
]
=
random
.
uniform
(
-
perspective
,
perspective
)
# x perspective (about y)
P
[
2
,
1
]
=
random
.
uniform
(
-
perspective
,
perspective
)
# y perspective (about x)
# Rotation and Scale
R
=
np
.
eye
(
3
)
a
=
random
.
uniform
(
-
degrees
,
degrees
)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s
=
random
.
uniform
(
1
-
scale
,
1
+
scale
)
# s = 2 ** random.uniform(-scale, scale)
R
[:
2
]
=
cv2
.
getRotationMatrix2D
(
angle
=
a
,
center
=
(
0
,
0
),
scale
=
s
)
# Shear
S
=
np
.
eye
(
3
)
S
[
0
,
1
]
=
math
.
tan
(
random
.
uniform
(
-
shear
,
shear
)
*
math
.
pi
/
180
)
# x shear (deg)
S
[
1
,
0
]
=
math
.
tan
(
random
.
uniform
(
-
shear
,
shear
)
*
math
.
pi
/
180
)
# y shear (deg)
# Translation
T
=
np
.
eye
(
3
)
T
[
0
,
2
]
=
random
.
uniform
(
0.5
-
translate
,
0.5
+
translate
)
*
width
# x translation (pixels)
T
[
1
,
2
]
=
random
.
uniform
(
0.5
-
translate
,
0.5
+
translate
)
*
height
# y translation (pixels)
# Combined rotation matrix
M
=
T
@
S
@
R
@
P
@
C
# order of operations (right to left) is IMPORTANT
if
(
border
[
0
]
!=
0
)
or
(
border
[
1
]
!=
0
)
or
(
M
!=
np
.
eye
(
3
))
.
any
():
# image changed
if
perspective
:
im
=
cv2
.
warpPerspective
(
im
,
M
,
dsize
=
(
width
,
height
),
borderValue
=
(
114
,
114
,
114
))
else
:
# affine
im
=
cv2
.
warpAffine
(
im
,
M
[:
2
],
dsize
=
(
width
,
height
),
borderValue
=
(
114
,
114
,
114
))
# Visualize
# import matplotlib.pyplot as plt
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
# ax[0].imshow(img[:, :, ::-1]) # base
# ax[1].imshow(img2[:, :, ::-1]) # warped
# Transform label coordinates
n
=
len
(
targets
)
if
n
:
use_segments
=
any
(
x
.
any
()
for
x
in
segments
)
new
=
np
.
zeros
((
n
,
4
))
if
use_segments
:
# warp segments
segments
=
resample_segments
(
segments
)
# upsample
for
i
,
segment
in
enumerate
(
segments
):
xy
=
np
.
ones
((
len
(
segment
),
3
))
xy
[:,
:
2
]
=
segment
xy
=
xy
@
M
.
T
# transform
xy
=
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]
if
perspective
else
xy
[:,
:
2
]
# perspective rescale or affine
# clip
new
[
i
]
=
segment2box
(
xy
,
width
,
height
)
else
:
# warp boxes
xy
=
np
.
ones
((
n
*
4
,
3
))
xy
[:,
:
2
]
=
targets
[:,
[
1
,
2
,
3
,
4
,
1
,
4
,
3
,
2
]]
.
reshape
(
n
*
4
,
2
)
# x1y1, x2y2, x1y2, x2y1
xy
=
xy
@
M
.
T
# transform
xy
=
(
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]
if
perspective
else
xy
[:,
:
2
])
.
reshape
(
n
,
8
)
# perspective rescale or affine
# create new boxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
new
=
np
.
concatenate
((
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
)))
.
reshape
(
4
,
n
)
.
T
# clip
new
[:,
[
0
,
2
]]
=
new
[:,
[
0
,
2
]]
.
clip
(
0
,
width
)
new
[:,
[
1
,
3
]]
=
new
[:,
[
1
,
3
]]
.
clip
(
0
,
height
)
# filter candidates
i
=
box_candidates
(
box1
=
targets
[:,
1
:
5
]
.
T
*
s
,
box2
=
new
.
T
,
area_thr
=
0.01
if
use_segments
else
0.10
)
targets
=
targets
[
i
]
targets
[:,
1
:
5
]
=
new
[
i
]
return
im
,
targets
def
copy_paste
(
im
,
labels
,
segments
,
probability
=
0.5
):
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
n
=
len
(
segments
)
if
probability
and
n
:
h
,
w
,
c
=
im
.
shape
# height, width, channels
im_new
=
np
.
zeros
(
im
.
shape
,
np
.
uint8
)
for
j
in
random
.
sample
(
range
(
n
),
k
=
round
(
probability
*
n
)):
l
,
s
=
labels
[
j
],
segments
[
j
]
box
=
w
-
l
[
3
],
l
[
2
],
w
-
l
[
1
],
l
[
4
]
ioa
=
bbox_ioa
(
box
,
labels
[:,
1
:
5
])
# intersection over area
if
(
ioa
<
0.30
)
.
all
():
# allow 30% obscuration of existing labels
labels
=
np
.
concatenate
((
labels
,
[[
l
[
0
],
*
box
]]),
0
)
segments
.
append
(
np
.
concatenate
((
w
-
s
[:,
0
:
1
],
s
[:,
1
:
2
]),
1
))
cv2
.
drawContours
(
im_new
,
[
segments
[
j
]
.
astype
(
np
.
int32
)],
-
1
,
(
255
,
255
,
255
),
cv2
.
FILLED
)
result
=
cv2
.
bitwise_and
(
src1
=
im
,
src2
=
im_new
)
result
=
cv2
.
flip
(
result
,
1
)
# augment segments (flip left-right)
i
=
result
>
0
# pixels to replace
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
im
[
i
]
=
result
[
i
]
# cv2.imwrite('debug.jpg', img) # debug
return
im
,
labels
,
segments
def
cutout
(
im
,
labels
):
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
h
,
w
=
im
.
shape
[:
2
]
# create random masks
scales
=
[
0.5
]
*
1
+
[
0.25
]
*
2
+
[
0.125
]
*
4
+
[
0.0625
]
*
8
+
[
0.03125
]
*
16
# image size fraction
for
s
in
scales
:
mask_h
=
random
.
randint
(
1
,
int
(
h
*
s
))
mask_w
=
random
.
randint
(
1
,
int
(
w
*
s
))
# box
xmin
=
max
(
0
,
random
.
randint
(
0
,
w
)
-
mask_w
//
2
)
ymin
=
max
(
0
,
random
.
randint
(
0
,
h
)
-
mask_h
//
2
)
xmax
=
min
(
w
,
xmin
+
mask_w
)
ymax
=
min
(
h
,
ymin
+
mask_h
)
# apply random color mask
im
[
ymin
:
ymax
,
xmin
:
xmax
]
=
[
random
.
randint
(
64
,
191
)
for
_
in
range
(
3
)]
# return unobscured labels
if
len
(
labels
)
and
s
>
0.03
:
box
=
np
.
array
([
xmin
,
ymin
,
xmax
,
ymax
],
dtype
=
np
.
float32
)
ioa
=
bbox_ioa
(
box
,
labels
[:,
1
:
5
])
# intersection over area
labels
=
labels
[
ioa
<
0.60
]
# remove >60% obscured labels
return
labels
def
mixup
(
im
,
labels
,
im2
,
labels2
):
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
r
=
np
.
random
.
beta
(
32.0
,
32.0
)
# mixup ratio, alpha=beta=32.0
im
=
(
im
*
r
+
im2
*
(
1
-
r
))
.
astype
(
np
.
uint8
)
labels
=
np
.
concatenate
((
labels
,
labels2
),
0
)
return
im
,
labels
def
box_candidates
(
box1
,
box2
,
wh_thr
=
2
,
ar_thr
=
20
,
area_thr
=
0.1
,
eps
=
1e-16
):
# box1(4,n), box2(4,n)
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1
,
h1
=
box1
[
2
]
-
box1
[
0
],
box1
[
3
]
-
box1
[
1
]
w2
,
h2
=
box2
[
2
]
-
box2
[
0
],
box2
[
3
]
-
box2
[
1
]
ar
=
np
.
maximum
(
w2
/
(
h2
+
eps
),
h2
/
(
w2
+
eps
))
# aspect ratio
return
(
w2
>
wh_thr
)
&
(
h2
>
wh_thr
)
&
(
w2
*
h2
/
(
w1
*
h1
+
eps
)
>
area_thr
)
&
(
ar
<
ar_thr
)
# candidates
utils/datasets.py
浏览文件 @
9e8fb9fd
#
D
ataset utils and dataloaders
#
YOLOv5 d
ataset utils and dataloaders
import
glob
import
hashlib
...
...
@@ -14,7 +14,6 @@ from pathlib import Path
from
threading
import
Thread
import
cv2
import
math
import
numpy
as
np
import
torch
import
torch.nn.functional
as
F
...
...
@@ -23,9 +22,9 @@ from PIL import Image, ExifTags
from
torch.utils.data
import
Dataset
from
tqdm
import
tqdm
from
utils.augmentations
import
augment_hsv
,
copy_paste
,
letterbox
,
mixup
,
random_perspective
from
utils.general
import
check_requirements
,
check_file
,
check_dataset
,
xywh2xyxy
,
xywhn2xyxy
,
xyxy2xywhn
,
\
xyn2xy
,
segment2box
,
segments2boxes
,
resample_segments
,
clean_str
from
utils.metrics
import
bbox_ioa
xyn2xy
,
segments2boxes
,
clean_str
from
utils.torch_utils
import
torch_distributed_zero_first
# Parameters
...
...
@@ -523,12 +522,10 @@ class LoadImagesAndLabels(Dataset): # for training/testing
img
,
labels
=
load_mosaic
(
self
,
index
)
shapes
=
None
# MixUp
https://arxiv.org/pdf/1710.09412.pdf
# MixUp
augmentation
if
random
.
random
()
<
hyp
[
'mixup'
]:
img2
,
labels2
=
load_mosaic
(
self
,
random
.
randint
(
0
,
self
.
n
-
1
))
r
=
np
.
random
.
beta
(
32.0
,
32.0
)
# mixup ratio, alpha=beta=32.0
img
=
(
img
*
r
+
img2
*
(
1
-
r
))
.
astype
(
np
.
uint8
)
labels
=
np
.
concatenate
((
labels
,
labels2
),
0
)
img
,
labels
=
mixup
(
img
,
labels
,
*
load_mosaic
(
self
,
random
.
randint
(
0
,
self
.
n
-
1
)))
else
:
# Load image
...
...
@@ -639,32 +636,6 @@ def load_image(self, index):
return
self
.
imgs
[
index
],
self
.
img_hw0
[
index
],
self
.
img_hw
[
index
]
# img, hw_original, hw_resized
def
augment_hsv
(
img
,
hgain
=
0.5
,
sgain
=
0.5
,
vgain
=
0.5
):
if
hgain
or
sgain
or
vgain
:
r
=
np
.
random
.
uniform
(
-
1
,
1
,
3
)
*
[
hgain
,
sgain
,
vgain
]
+
1
# random gains
hue
,
sat
,
val
=
cv2
.
split
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2HSV
))
dtype
=
img
.
dtype
# uint8
x
=
np
.
arange
(
0
,
256
,
dtype
=
r
.
dtype
)
lut_hue
=
((
x
*
r
[
0
])
%
180
)
.
astype
(
dtype
)
lut_sat
=
np
.
clip
(
x
*
r
[
1
],
0
,
255
)
.
astype
(
dtype
)
lut_val
=
np
.
clip
(
x
*
r
[
2
],
0
,
255
)
.
astype
(
dtype
)
img_hsv
=
cv2
.
merge
((
cv2
.
LUT
(
hue
,
lut_hue
),
cv2
.
LUT
(
sat
,
lut_sat
),
cv2
.
LUT
(
val
,
lut_val
)))
cv2
.
cvtColor
(
img_hsv
,
cv2
.
COLOR_HSV2BGR
,
dst
=
img
)
# no return needed
def
hist_equalize
(
img
,
clahe
=
True
,
bgr
=
False
):
# Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
yuv
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2YUV
if
bgr
else
cv2
.
COLOR_RGB2YUV
)
if
clahe
:
c
=
cv2
.
createCLAHE
(
clipLimit
=
2.0
,
tileGridSize
=
(
8
,
8
))
yuv
[:,
:,
0
]
=
c
.
apply
(
yuv
[:,
:,
0
])
else
:
yuv
[:,
:,
0
]
=
cv2
.
equalizeHist
(
yuv
[:,
:,
0
])
# equalize Y channel histogram
return
cv2
.
cvtColor
(
yuv
,
cv2
.
COLOR_YUV2BGR
if
bgr
else
cv2
.
COLOR_YUV2RGB
)
# convert YUV image to RGB
def
load_mosaic
(
self
,
index
):
# loads images in a 4-mosaic
...
...
@@ -796,205 +767,6 @@ def load_mosaic9(self, index):
return
img9
,
labels9
def
replicate
(
img
,
labels
):
# Replicate labels
h
,
w
=
img
.
shape
[:
2
]
boxes
=
labels
[:,
1
:]
.
astype
(
int
)
x1
,
y1
,
x2
,
y2
=
boxes
.
T
s
=
((
x2
-
x1
)
+
(
y2
-
y1
))
/
2
# side length (pixels)
for
i
in
s
.
argsort
()[:
round
(
s
.
size
*
0.5
)]:
# smallest indices
x1b
,
y1b
,
x2b
,
y2b
=
boxes
[
i
]
bh
,
bw
=
y2b
-
y1b
,
x2b
-
x1b
yc
,
xc
=
int
(
random
.
uniform
(
0
,
h
-
bh
)),
int
(
random
.
uniform
(
0
,
w
-
bw
))
# offset x, y
x1a
,
y1a
,
x2a
,
y2a
=
[
xc
,
yc
,
xc
+
bw
,
yc
+
bh
]
img
[
y1a
:
y2a
,
x1a
:
x2a
]
=
img
[
y1b
:
y2b
,
x1b
:
x2b
]
# img4[ymin:ymax, xmin:xmax]
labels
=
np
.
append
(
labels
,
[[
labels
[
i
,
0
],
x1a
,
y1a
,
x2a
,
y2a
]],
axis
=
0
)
return
img
,
labels
def
letterbox
(
img
,
new_shape
=
(
640
,
640
),
color
=
(
114
,
114
,
114
),
auto
=
True
,
scaleFill
=
False
,
scaleup
=
True
,
stride
=
32
):
# Resize and pad image while meeting stride-multiple constraints
shape
=
img
.
shape
[:
2
]
# current shape [height, width]
if
isinstance
(
new_shape
,
int
):
new_shape
=
(
new_shape
,
new_shape
)
# Scale ratio (new / old)
r
=
min
(
new_shape
[
0
]
/
shape
[
0
],
new_shape
[
1
]
/
shape
[
1
])
if
not
scaleup
:
# only scale down, do not scale up (for better test mAP)
r
=
min
(
r
,
1.0
)
# Compute padding
ratio
=
r
,
r
# width, height ratios
new_unpad
=
int
(
round
(
shape
[
1
]
*
r
)),
int
(
round
(
shape
[
0
]
*
r
))
dw
,
dh
=
new_shape
[
1
]
-
new_unpad
[
0
],
new_shape
[
0
]
-
new_unpad
[
1
]
# wh padding
if
auto
:
# minimum rectangle
dw
,
dh
=
np
.
mod
(
dw
,
stride
),
np
.
mod
(
dh
,
stride
)
# wh padding
elif
scaleFill
:
# stretch
dw
,
dh
=
0.0
,
0.0
new_unpad
=
(
new_shape
[
1
],
new_shape
[
0
])
ratio
=
new_shape
[
1
]
/
shape
[
1
],
new_shape
[
0
]
/
shape
[
0
]
# width, height ratios
dw
/=
2
# divide padding into 2 sides
dh
/=
2
if
shape
[::
-
1
]
!=
new_unpad
:
# resize
img
=
cv2
.
resize
(
img
,
new_unpad
,
interpolation
=
cv2
.
INTER_LINEAR
)
top
,
bottom
=
int
(
round
(
dh
-
0.1
)),
int
(
round
(
dh
+
0.1
))
left
,
right
=
int
(
round
(
dw
-
0.1
)),
int
(
round
(
dw
+
0.1
))
img
=
cv2
.
copyMakeBorder
(
img
,
top
,
bottom
,
left
,
right
,
cv2
.
BORDER_CONSTANT
,
value
=
color
)
# add border
return
img
,
ratio
,
(
dw
,
dh
)
def
random_perspective
(
img
,
targets
=
(),
segments
=
(),
degrees
=
10
,
translate
=.
1
,
scale
=.
1
,
shear
=
10
,
perspective
=
0.0
,
border
=
(
0
,
0
)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
height
=
img
.
shape
[
0
]
+
border
[
0
]
*
2
# shape(h,w,c)
width
=
img
.
shape
[
1
]
+
border
[
1
]
*
2
# Center
C
=
np
.
eye
(
3
)
C
[
0
,
2
]
=
-
img
.
shape
[
1
]
/
2
# x translation (pixels)
C
[
1
,
2
]
=
-
img
.
shape
[
0
]
/
2
# y translation (pixels)
# Perspective
P
=
np
.
eye
(
3
)
P
[
2
,
0
]
=
random
.
uniform
(
-
perspective
,
perspective
)
# x perspective (about y)
P
[
2
,
1
]
=
random
.
uniform
(
-
perspective
,
perspective
)
# y perspective (about x)
# Rotation and Scale
R
=
np
.
eye
(
3
)
a
=
random
.
uniform
(
-
degrees
,
degrees
)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s
=
random
.
uniform
(
1
-
scale
,
1
+
scale
)
# s = 2 ** random.uniform(-scale, scale)
R
[:
2
]
=
cv2
.
getRotationMatrix2D
(
angle
=
a
,
center
=
(
0
,
0
),
scale
=
s
)
# Shear
S
=
np
.
eye
(
3
)
S
[
0
,
1
]
=
math
.
tan
(
random
.
uniform
(
-
shear
,
shear
)
*
math
.
pi
/
180
)
# x shear (deg)
S
[
1
,
0
]
=
math
.
tan
(
random
.
uniform
(
-
shear
,
shear
)
*
math
.
pi
/
180
)
# y shear (deg)
# Translation
T
=
np
.
eye
(
3
)
T
[
0
,
2
]
=
random
.
uniform
(
0.5
-
translate
,
0.5
+
translate
)
*
width
# x translation (pixels)
T
[
1
,
2
]
=
random
.
uniform
(
0.5
-
translate
,
0.5
+
translate
)
*
height
# y translation (pixels)
# Combined rotation matrix
M
=
T
@
S
@
R
@
P
@
C
# order of operations (right to left) is IMPORTANT
if
(
border
[
0
]
!=
0
)
or
(
border
[
1
]
!=
0
)
or
(
M
!=
np
.
eye
(
3
))
.
any
():
# image changed
if
perspective
:
img
=
cv2
.
warpPerspective
(
img
,
M
,
dsize
=
(
width
,
height
),
borderValue
=
(
114
,
114
,
114
))
else
:
# affine
img
=
cv2
.
warpAffine
(
img
,
M
[:
2
],
dsize
=
(
width
,
height
),
borderValue
=
(
114
,
114
,
114
))
# Visualize
# import matplotlib.pyplot as plt
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
# ax[0].imshow(img[:, :, ::-1]) # base
# ax[1].imshow(img2[:, :, ::-1]) # warped
# Transform label coordinates
n
=
len
(
targets
)
if
n
:
use_segments
=
any
(
x
.
any
()
for
x
in
segments
)
new
=
np
.
zeros
((
n
,
4
))
if
use_segments
:
# warp segments
segments
=
resample_segments
(
segments
)
# upsample
for
i
,
segment
in
enumerate
(
segments
):
xy
=
np
.
ones
((
len
(
segment
),
3
))
xy
[:,
:
2
]
=
segment
xy
=
xy
@
M
.
T
# transform
xy
=
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]
if
perspective
else
xy
[:,
:
2
]
# perspective rescale or affine
# clip
new
[
i
]
=
segment2box
(
xy
,
width
,
height
)
else
:
# warp boxes
xy
=
np
.
ones
((
n
*
4
,
3
))
xy
[:,
:
2
]
=
targets
[:,
[
1
,
2
,
3
,
4
,
1
,
4
,
3
,
2
]]
.
reshape
(
n
*
4
,
2
)
# x1y1, x2y2, x1y2, x2y1
xy
=
xy
@
M
.
T
# transform
xy
=
(
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]
if
perspective
else
xy
[:,
:
2
])
.
reshape
(
n
,
8
)
# perspective rescale or affine
# create new boxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
new
=
np
.
concatenate
((
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
)))
.
reshape
(
4
,
n
)
.
T
# clip
new
[:,
[
0
,
2
]]
=
new
[:,
[
0
,
2
]]
.
clip
(
0
,
width
)
new
[:,
[
1
,
3
]]
=
new
[:,
[
1
,
3
]]
.
clip
(
0
,
height
)
# filter candidates
i
=
box_candidates
(
box1
=
targets
[:,
1
:
5
]
.
T
*
s
,
box2
=
new
.
T
,
area_thr
=
0.01
if
use_segments
else
0.10
)
targets
=
targets
[
i
]
targets
[:,
1
:
5
]
=
new
[
i
]
return
img
,
targets
def
copy_paste
(
img
,
labels
,
segments
,
probability
=
0.5
):
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
n
=
len
(
segments
)
if
probability
and
n
:
h
,
w
,
c
=
img
.
shape
# height, width, channels
im_new
=
np
.
zeros
(
img
.
shape
,
np
.
uint8
)
for
j
in
random
.
sample
(
range
(
n
),
k
=
round
(
probability
*
n
)):
l
,
s
=
labels
[
j
],
segments
[
j
]
box
=
w
-
l
[
3
],
l
[
2
],
w
-
l
[
1
],
l
[
4
]
ioa
=
bbox_ioa
(
box
,
labels
[:,
1
:
5
])
# intersection over area
if
(
ioa
<
0.30
)
.
all
():
# allow 30% obscuration of existing labels
labels
=
np
.
concatenate
((
labels
,
[[
l
[
0
],
*
box
]]),
0
)
segments
.
append
(
np
.
concatenate
((
w
-
s
[:,
0
:
1
],
s
[:,
1
:
2
]),
1
))
cv2
.
drawContours
(
im_new
,
[
segments
[
j
]
.
astype
(
np
.
int32
)],
-
1
,
(
255
,
255
,
255
),
cv2
.
FILLED
)
result
=
cv2
.
bitwise_and
(
src1
=
img
,
src2
=
im_new
)
result
=
cv2
.
flip
(
result
,
1
)
# augment segments (flip left-right)
i
=
result
>
0
# pixels to replace
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
img
[
i
]
=
result
[
i
]
# cv2.imwrite('debug.jpg', img) # debug
return
img
,
labels
,
segments
def
box_candidates
(
box1
,
box2
,
wh_thr
=
2
,
ar_thr
=
20
,
area_thr
=
0.1
,
eps
=
1e-16
):
# box1(4,n), box2(4,n)
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1
,
h1
=
box1
[
2
]
-
box1
[
0
],
box1
[
3
]
-
box1
[
1
]
w2
,
h2
=
box2
[
2
]
-
box2
[
0
],
box2
[
3
]
-
box2
[
1
]
ar
=
np
.
maximum
(
w2
/
(
h2
+
eps
),
h2
/
(
w2
+
eps
))
# aspect ratio
return
(
w2
>
wh_thr
)
&
(
h2
>
wh_thr
)
&
(
w2
*
h2
/
(
w1
*
h1
+
eps
)
>
area_thr
)
&
(
ar
<
ar_thr
)
# candidates
def
cutout
(
image
,
labels
):
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
h
,
w
=
image
.
shape
[:
2
]
# create random masks
scales
=
[
0.5
]
*
1
+
[
0.25
]
*
2
+
[
0.125
]
*
4
+
[
0.0625
]
*
8
+
[
0.03125
]
*
16
# image size fraction
for
s
in
scales
:
mask_h
=
random
.
randint
(
1
,
int
(
h
*
s
))
mask_w
=
random
.
randint
(
1
,
int
(
w
*
s
))
# box
xmin
=
max
(
0
,
random
.
randint
(
0
,
w
)
-
mask_w
//
2
)
ymin
=
max
(
0
,
random
.
randint
(
0
,
h
)
-
mask_h
//
2
)
xmax
=
min
(
w
,
xmin
+
mask_w
)
ymax
=
min
(
h
,
ymin
+
mask_h
)
# apply random color mask
image
[
ymin
:
ymax
,
xmin
:
xmax
]
=
[
random
.
randint
(
64
,
191
)
for
_
in
range
(
3
)]
# return unobscured labels
if
len
(
labels
)
and
s
>
0.03
:
box
=
np
.
array
([
xmin
,
ymin
,
xmax
,
ymax
],
dtype
=
np
.
float32
)
ioa
=
bbox_ioa
(
box
,
labels
[:,
1
:
5
])
# intersection over area
labels
=
labels
[
ioa
<
0.60
]
# remove >60% obscured labels
return
labels
def
create_folder
(
path
=
'./new'
):
# Create folder
if
os
.
path
.
exists
(
path
):
...
...
@@ -1012,7 +784,6 @@ def flatten_recursive(path='../datasets/coco128'):
def
extract_boxes
(
path
=
'../datasets/coco128'
):
# from utils.datasets import *; extract_boxes()
# Convert detection dataset into classification dataset, with one directory per class
path
=
Path
(
path
)
# images dir
shutil
.
rmtree
(
path
/
'classifier'
)
if
(
path
/
'classifier'
)
.
is_dir
()
else
None
# remove existing
files
=
list
(
path
.
rglob
(
'*.*'
))
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论