Unverified 提交 a3469269 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

Add class filtering to `LoadImagesAndLabels()` dataloader (#5172)

* Add train class filter feature to datasets.py Allows for training on a subset of total classes if `include_class` list is defined on datasets.py L448: ```python include_class = [] # filter labels to include only these classes (optional) ``` * segments fix
上级 b754525e
...@@ -437,10 +437,6 @@ class LoadImagesAndLabels(Dataset): ...@@ -437,10 +437,6 @@ class LoadImagesAndLabels(Dataset):
self.shapes = np.array(shapes, dtype=np.float64) self.shapes = np.array(shapes, dtype=np.float64)
self.img_files = list(cache.keys()) # update self.img_files = list(cache.keys()) # update
self.label_files = img2label_paths(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update
if single_cls:
for x in self.labels:
x[:, 0] = 0
n = len(shapes) # number of images n = len(shapes) # number of images
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches nb = bi[-1] + 1 # number of batches
...@@ -448,6 +444,20 @@ class LoadImagesAndLabels(Dataset): ...@@ -448,6 +444,20 @@ class LoadImagesAndLabels(Dataset):
self.n = n self.n = n
self.indices = range(n) self.indices = range(n)
# Update labels
include_class = [] # filter labels to include only these classes (optional)
include_class_array = np.array(include_class).reshape(1, -1)
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
if include_class:
j = (label[:, 0:1] == include_class_array).any(1)
self.labels[i] = label[j]
if segment:
self.segments[i] = segment[j]
if single_cls: # single-class training, merge all classes into 0
self.labels[i][:, 0] = 0
if segment:
self.segments[i][:, 0] = 0
# Rectangular Training # Rectangular Training
if self.rect: if self.rect:
# Sort by aspect ratio # Sort by aspect ratio
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论