Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
c9d47ae0
提交
c9d47ae0
authored
11月 22, 2022
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Created using Colaboratory
上级
b32f67f6
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
72 行增加
和
71 行删除
+72
-71
tutorial.ipynb
tutorial.ipynb
+72
-71
没有找到文件。
tutorial.ipynb
浏览文件 @
c9d47ae0
...
...
@@ -14,7 +14,7 @@
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"
300b4d5355ef4967bd5246afeef6eef5
": {
"
1f7df330663048998adcf8a45bc8f69b
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
...
...
@@ -29,14 +29,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_
84e6829bb88845a8a4f42700b8496925
",
"IPY_MODEL_
c038e52d41bf4d5b9602930c3d074087
",
"IPY_MODEL_
2667604641764341b0bc8c6afea438fd
"
"IPY_MODEL_
e896e6096dd244c59d7955e2035cd729
",
"IPY_MODEL_
a6ff238c29984b24bf6d0bd175c19430
",
"IPY_MODEL_
3c085ba3f3fd4c3c8a6bb41b41ce1479
"
],
"layout": "IPY_MODEL_
98b3a4806ed14102b0d75e6c571d613
4"
"layout": "IPY_MODEL_
16b0c8aa6e0f427e8a54d3791abb750
4"
}
},
"
84e6829bb88845a8a4f42700b8496925
": {
"
e896e6096dd244c59d7955e2035cd729
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
...
...
@@ -51,13 +51,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c
66a77395e42424d904699edcbb67291
",
"layout": "IPY_MODEL_c
7b2dd0f78384cad8e400b282996cdf5
",
"placeholder": "",
"style": "IPY_MODEL_
c4bbc15bf853439399dbcf1d40a5a407
",
"style": "IPY_MODEL_
6a27e43b0e434edd82ee63f0a91036ca
",
"value": "100%"
}
},
"
c038e52d41bf4d5b9602930c3d074087
": {
"
a6ff238c29984b24bf6d0bd175c19430
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
...
...
@@ -73,15 +73,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
0aaabfac395b43afbdd6d752c502bbf6
",
"layout": "IPY_MODEL_
cce0e6c0c4ec442cb47e65c674e02e92
",
"max": 818322941,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_
3786d970492b4aa38f886f2572fd958c
",
"style": "IPY_MODEL_
c5b9f38e2f0d4f9aa97fe87265263743
",
"value": 818322941
}
},
"
2667604641764341b0bc8c6afea438fd
": {
"
3c085ba3f3fd4c3c8a6bb41b41ce1479
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
...
...
@@ -96,13 +96,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
b86d0f2d7be74cebbcaa884b53123eeb
",
"layout": "IPY_MODEL_
df554fb955c7454696beac5a82889386
",
"placeholder": "",
"style": "IPY_MODEL_
fa7b1497925a457f89286a71f073f416
",
"value": " 780M/780M [00:
57<00:00, 10.1
MB/s]"
"style": "IPY_MODEL_
74e9112a87a242f4831b7d68c7da6333
",
"value": " 780M/780M [00:
05<00:00, 126
MB/s]"
}
},
"
98b3a4806ed14102b0d75e6c571d613
4": {
"
16b0c8aa6e0f427e8a54d3791abb750
4": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -154,7 +154,7 @@
"width": null
}
},
"c
66a77395e42424d904699edcbb67291
": {
"c
7b2dd0f78384cad8e400b282996cdf5
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -206,7 +206,7 @@
"width": null
}
},
"
c4bbc15bf853439399dbcf1d40a5a407
": {
"
6a27e43b0e434edd82ee63f0a91036ca
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -221,7 +221,7 @@
"description_width": ""
}
},
"
0aaabfac395b43afbdd6d752c502bbf6
": {
"
cce0e6c0c4ec442cb47e65c674e02e92
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -273,7 +273,7 @@
"width": null
}
},
"
3786d970492b4aa38f886f2572fd958c
": {
"
c5b9f38e2f0d4f9aa97fe87265263743
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -289,7 +289,7 @@
"description_width": ""
}
},
"
b86d0f2d7be74cebbcaa884b53123eeb
": {
"
df554fb955c7454696beac5a82889386
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -341,7 +341,7 @@
"width": null
}
},
"
fa7b1497925a457f89286a71f073f416
": {
"
74e9112a87a242f4831b7d68c7da6333
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -401,7 +401,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
32e3bc15-6d02-4352-f0a3-912059d134a5
"
"outputId": "
f9f016ad-3dcf-4bd2-e1c3-d5b79efc6f32
"
},
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
...
...
@@ -418,7 +418,7 @@
"output_type": "stream",
"name": "stderr",
"text": [
"YOLOv5 🚀 v
6.2-256-g0051615
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
"YOLOv5 🚀 v
7.0-1-gb32f67f
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
]
},
{
...
...
@@ -446,9 +446,9 @@
" vid.mp4 # video\n",
" screen # screenshot\n",
" path/ # directory\n",
"
'path/*.jpg' # glob\n",
"
'https://youtu.be/Zgi9g1ksQHc' # YouTube\n",
"
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
" 'path/*.jpg' # glob\n",
" 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n",
" 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
"```"
]
},
...
...
@@ -459,7 +459,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
8e81d6e9-0360-4212-cd61-9a5a58d3f703
"
"outputId": "
b4db5c49-f501-4505-cf0d-a1d35236c485
"
},
"source": [
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
...
...
@@ -472,16 +472,16 @@
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1\n",
"YOLOv5 🚀 v
6.2-256-g0051615
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"YOLOv5 🚀 v
7.0-1-gb32f67f
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v
6.2
/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:00<00:00, 1
9.5MB/s]
\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v
7.0
/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:00<00:00, 1
16MB/s]
\n",
"\n",
"Fusing layers... \n",
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 17.
5
ms\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 1
8.0
ms\n",
"Speed: 0.5ms pre-process, 1
7.8ms inference, 17
.6ms NMS per image at shape (1, 3, 640, 640)\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 17.
0
ms\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 1
4.3
ms\n",
"Speed: 0.5ms pre-process, 1
5.7ms inference, 18
.6ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
]
}
...
...
@@ -515,20 +515,20 @@
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"
300b4d5355ef4967bd5246afeef6eef5
",
"
84e6829bb88845a8a4f42700b8496925
",
"
c038e52d41bf4d5b9602930c3d074087
",
"
2667604641764341b0bc8c6afea438fd
",
"
98b3a4806ed14102b0d75e6c571d613
4",
"c
66a77395e42424d904699edcbb67291
",
"
c4bbc15bf853439399dbcf1d40a5a407
",
"
0aaabfac395b43afbdd6d752c502bbf6
",
"
3786d970492b4aa38f886f2572fd958c
",
"
b86d0f2d7be74cebbcaa884b53123eeb
",
"
fa7b1497925a457f89286a71f073f416
"
"
1f7df330663048998adcf8a45bc8f69b
",
"
e896e6096dd244c59d7955e2035cd729
",
"
a6ff238c29984b24bf6d0bd175c19430
",
"
3c085ba3f3fd4c3c8a6bb41b41ce1479
",
"
16b0c8aa6e0f427e8a54d3791abb750
4",
"c
7b2dd0f78384cad8e400b282996cdf5
",
"
6a27e43b0e434edd82ee63f0a91036ca
",
"
cce0e6c0c4ec442cb47e65c674e02e92
",
"
c5b9f38e2f0d4f9aa97fe87265263743
",
"
df554fb955c7454696beac5a82889386
",
"
74e9112a87a242f4831b7d68c7da6333
"
]
},
"outputId": "
61ffec5e-90ea-44f6-c0ea-b006e6e7072f
"
"outputId": "
c7d0a0d2-abfb-44c3-d60d-f99d0e7aabad
"
},
"source": [
"# Download COCO val\n",
...
...
@@ -546,7 +546,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "
300b4d5355ef4967bd5246afeef6eef5
"
"model_id": "
1f7df330663048998adcf8a45bc8f69b
"
}
},
"metadata": {}
...
...
@@ -560,7 +560,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
aa5d5cea-14c1-4a19-bfdf-95b7164962cf
"
"outputId": "
5fc61358-7bc5-4310-a310-9059f66c6322
"
},
"source": [
"# Validate YOLOv5s on COCO val\n",
...
...
@@ -573,30 +573,30 @@
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
"YOLOv5 🚀 v
6.2-256-g0051615
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"YOLOv5 🚀 v
7.0-1-gb32f67f
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"\n",
"Fusing layers... \n",
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:02<00:00,
2066.57
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:02<00:00,
1977.30
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 157/157 [01:
09<00:00, 2.26
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 157/157 [01:
12<00:00, 2.17
it/s]\n",
" all 5000 36335 0.67 0.521 0.566 0.371\n",
"Speed: 0.1ms pre-process, 2.
7ms inference, 1.9
ms NMS per image at shape (32, 3, 640, 640)\n",
"Speed: 0.1ms pre-process, 2.
9ms inference, 2.0
ms NMS per image at shape (32, 3, 640, 640)\n",
"\n",
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5s_predictions.json...\n",
"loading annotations into memory...\n",
"Done (t=0.
82
s)\n",
"Done (t=0.
43
s)\n",
"creating index...\n",
"index created!\n",
"Loading and preparing results...\n",
"DONE (t=5.
49
s)\n",
"DONE (t=5.
85
s)\n",
"creating index...\n",
"index created!\n",
"Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n",
"DONE (t=
74.26
s).\n",
"DONE (t=
82.22
s).\n",
"Accumulating evaluation results...\n",
"DONE (t=1
3.46
s).\n",
"DONE (t=1
4.92
s).\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.374\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.572\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.402\n",
...
...
@@ -676,7 +676,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
f0fcdc77-5326-41e1-bacc-be5432eefa2a
"
"outputId": "
721b9028-767f-4a05-c964-692c245f7398
"
},
"source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n",
...
...
@@ -690,7 +690,7 @@
"text": [
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 🚀 v
6.2-256-g0051615
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"YOLOv5 🚀 v
7.0-1-gb32f67f
Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
...
...
@@ -699,8 +699,8 @@
"\n",
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
"Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
"100% 6.66M/6.66M [00:00<00:00,
39.8
MB/s]\n",
"Dataset download success ✅ (0.
8
s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"100% 6.66M/6.66M [00:00<00:00,
261
MB/s]\n",
"Dataset download success ✅ (0.
3
s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
...
...
@@ -734,11 +734,11 @@
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00,
2084.63
it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00,
1911.57
it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 2
55.0
9it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 2
29.6
9it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00,
106.58it/s]
\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00,
97.70it/s]
\n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
"Plotting labels to runs/train/exp/labels.jpg... \n",
...
...
@@ -748,18 +748,18 @@
"Starting training for 3 epochs...\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 0/2 3.74G 0.04618 0.07207 0.017 232 640: 100% 8/8 [00:0
6<00:00, 1.33
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.
99
it/s]\n",
" 0/2 3.74G 0.04618 0.07207 0.017 232 640: 100% 8/8 [00:0
7<00:00, 1.10
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.
28
it/s]\n",
" all 128 929 0.672 0.594 0.682 0.451\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 1/2 5.36G 0.04623 0.06888 0.01821 201 640: 100% 8/8 [00:02<00:00, 3.2
8
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 3.
02
it/s]\n",
" 1/2 5.36G 0.04623 0.06888 0.01821 201 640: 100% 8/8 [00:02<00:00, 3.2
9
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 3.
17
it/s]\n",
" all 128 929 0.721 0.639 0.724 0.48\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 2/2 5.36G 0.04361 0.06479 0.01698 227 640: 100% 8/8 [00:02<00:00, 3.
50
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 3.
05
it/s]\n",
" 2/2 5.36G 0.04361 0.06479 0.01698 227 640: 100% 8/8 [00:02<00:00, 3.
46
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 3.
11
it/s]\n",
" all 128 929 0.758 0.641 0.731 0.487\n",
"\n",
"3 epochs completed in 0.005 hours.\n",
...
...
@@ -769,7 +769,7 @@
"Validating runs/train/exp/weights/best.pt...\n",
"Fusing layers... \n",
"Model summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:03<00:00, 1.0
9
it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:03<00:00, 1.0
5
it/s]\n",
" all 128 929 0.757 0.641 0.732 0.487\n",
" person 128 254 0.86 0.705 0.804 0.528\n",
" bicycle 128 6 0.773 0.578 0.725 0.426\n",
...
...
@@ -972,4 +972,4 @@
"outputs": []
}
]
}
}
\ No newline at end of file
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论