Unverified 提交 d669a746 authored 作者: Gaz Iqbal's avatar Gaz Iqbal 提交者: GitHub

Detect.py supports running against a Triton container (#9228)

* update coco128-seg comments * Enables detect.py to use Triton for inference Triton Inference Server is an open source inference serving software that streamlines AI inferencing. https://github.com/triton-inference-server/server The user can now provide a "--triton-url" argument to detect.py to use a local or remote Triton server for inference. For e.g., http://localhost:8000 will use http over port 8000 and grpc://localhost:8001 will use grpc over port 8001. Note, it is not necessary to specify a weights file to use Triton. A Triton container can be created by first exporting the Yolov5 model to a Triton supported runtime. Onnx, Torchscript, TensorRT are supported by both Triton and the export.py script. The exported model can then be containerized via the OctoML CLI. See https://github.com/octoml/octo-cli#getting-started for a guide. * added triton client to requirements * fixed support for TFSavedModels in Triton * reverted change * Test CoreML update Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update ci-testing.yml Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Use pathlib Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Refacto DetectMultiBackend to directly accept triton url as --weights http://... Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Deploy category Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update triton.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * Update triton.py Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add printout and requirements check * Cleanup Signed-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> * triton fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed triton model query over grpc * Update check_requirements('tritonclient[all]') * group imports * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix likely remote URL bug * update comment * Update is_url() * Fix 2x download attempt on http://path/to/model.ptSigned-off-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: 's avatarglennjocher <glenn.jocher@ultralytics.com> Co-authored-by: 's avatarGaz Iqbal <giqbal@octoml.ai> Co-authored-by: 's avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
上级 1320ce18
......@@ -104,7 +104,7 @@ def run(
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.Tensor(im).to(device)
im = torch.Tensor(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
if len(im.shape) == 3:
im = im[None] # expand for batch dim
......
......@@ -49,7 +49,7 @@ from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s.pt', # model.pt path(s)
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
......@@ -108,11 +108,11 @@ def run(
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(device)
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
......@@ -214,7 +214,7 @@ def run(
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
......
......@@ -10,6 +10,7 @@ import warnings
from collections import OrderedDict, namedtuple
from copy import copy
from pathlib import Path
from urllib.parse import urlparse
import cv2
import numpy as np
......@@ -327,11 +328,13 @@ class DetectMultiBackend(nn.Module):
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = self._model_type(w) # type
w = attempt_download(w) # download if not local
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
fp16 &= pt or jit or onnx or engine # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
stride = 32 # default stride
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
if not (pt or triton):
w = attempt_download(w) # download if not local
if pt: # PyTorch
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
......@@ -342,7 +345,7 @@ class DetectMultiBackend(nn.Module):
elif jit: # TorchScript
LOGGER.info(f'Loading {w} for TorchScript inference...')
extra_files = {'config.txt': ''} # model metadata
model = torch.jit.load(w, _extra_files=extra_files)
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
model.half() if fp16 else model.float()
if extra_files['config.txt']: # load metadata dict
d = json.loads(extra_files['config.txt'],
......@@ -472,6 +475,12 @@ class DetectMultiBackend(nn.Module):
predictor = pdi.create_predictor(config)
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
output_names = predictor.get_output_names()
elif triton: # NVIDIA Triton Inference Server
LOGGER.info(f'Using {w} as Triton Inference Server...')
check_requirements('tritonclient[all]')
from utils.triton import TritonRemoteModel
model = TritonRemoteModel(url=w)
nhwc = model.runtime.startswith("tensorflow")
else:
raise NotImplementedError(f'ERROR: {w} is not a supported format')
......@@ -488,6 +497,8 @@ class DetectMultiBackend(nn.Module):
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.pt: # PyTorch
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
......@@ -517,7 +528,7 @@ class DetectMultiBackend(nn.Module):
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
elif self.coreml: # CoreML
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
im = im.cpu().numpy()
im = Image.fromarray((im[0] * 255).astype('uint8'))
# im = im.resize((192, 320), Image.ANTIALIAS)
y = self.model.predict({'image': im}) # coordinates are xywh normalized
......@@ -532,8 +543,10 @@ class DetectMultiBackend(nn.Module):
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
elif self.triton: # NVIDIA Triton Inference Server
y = self.model(im)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = self.model(im, training=False) if self.keras else self.model(im)
elif self.pb: # GraphDef
......@@ -566,8 +579,8 @@ class DetectMultiBackend(nn.Module):
def warmup(self, imgsz=(1, 3, 640, 640)):
# Warmup model by running inference once
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
if any(warmup_types) and self.device.type != 'cpu':
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
for _ in range(2 if self.jit else 1): #
self.forward(im) # warmup
......@@ -575,14 +588,17 @@ class DetectMultiBackend(nn.Module):
@staticmethod
def _model_type(p='path/to/model.pt'):
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
from export import export_formats
sf = list(export_formats().Suffix) + ['.xml'] # export suffixes
from utils.downloads import is_url
sf = list(export_formats().Suffix) # export suffixes
if not is_url(p, check=False):
check_suffix(p, sf) # checks
p = Path(p).name # eliminate trailing separators
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, xml2 = (s in p for s in sf)
xml |= xml2 # *_openvino_model or *.xml
tflite &= not edgetpu # *.tflite
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle
url = urlparse(p) # if url may be Triton inference server
types = [s in Path(p).name for s in sf]
types[8] &= not types[9] # tflite &= not edgetpu
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
return types + [triton]
@staticmethod
def _load_metadata(f=Path('path/to/meta.yaml')):
......
......@@ -34,6 +34,9 @@ seaborn>=0.11.0
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev # OpenVINO export
# Deploy --------------------------------------
# tritonclient[all]~=2.24.0
# Extras --------------------------------------
ipython # interactive notebook
psutil # system utilization
......
......@@ -114,7 +114,7 @@ def run(
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(device)
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
......
......@@ -16,13 +16,13 @@ import requests
import torch
def is_url(url, check_exists=True):
def is_url(url, check=True):
# Check if string is URL and check if URL exists
try:
url = str(url)
result = urllib.parse.urlparse(url)
assert all([result.scheme, result.netloc, result.path]) # check if is url
return (urllib.request.urlopen(url).getcode() == 200) if check_exists else True # check if exists online
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
except (AssertionError, urllib.request.HTTPError):
return False
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
""" Utils to interact with the Triton Inference Server
"""
import typing
from urllib.parse import urlparse
import torch
class TritonRemoteModel:
""" A wrapper over a model served by the Triton Inference Server. It can
be configured to communicate over GRPC or HTTP. It accepts Torch Tensors
as input and returns them as outputs.
"""
def __init__(self, url: str):
"""
Keyword arguments:
url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
"""
parsed_url = urlparse(url)
if parsed_url.scheme == "grpc":
from tritonclient.grpc import InferenceServerClient, InferInput
self.client = InferenceServerClient(parsed_url.netloc) # Triton GRPC client
model_repository = self.client.get_model_repository_index()
self.model_name = model_repository.models[0].name
self.metadata = self.client.get_model_metadata(self.model_name, as_json=True)
def create_input_placeholders() -> typing.List[InferInput]:
return [
InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]
else:
from tritonclient.http import InferenceServerClient, InferInput
self.client = InferenceServerClient(parsed_url.netloc) # Triton HTTP client
model_repository = self.client.get_model_repository_index()
self.model_name = model_repository[0]['name']
self.metadata = self.client.get_model_metadata(self.model_name)
def create_input_placeholders() -> typing.List[InferInput]:
return [
InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]
self._create_input_placeholders_fn = create_input_placeholders
@property
def runtime(self):
"""Returns the model runtime"""
return self.metadata.get("backend", self.metadata.get("platform"))
def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]:
""" Invokes the model. Parameters can be provided via args or kwargs.
args, if provided, are assumed to match the order of inputs of the model.
kwargs are matched with the model input names.
"""
inputs = self._create_inputs(*args, **kwargs)
response = self.client.infer(model_name=self.model_name, inputs=inputs)
result = []
for output in self.metadata['outputs']:
tensor = torch.as_tensor(response.as_numpy(output['name']))
result.append(tensor)
return result[0] if len(result) == 1 else result
def _create_inputs(self, *args, **kwargs):
args_len, kwargs_len = len(args), len(kwargs)
if not args_len and not kwargs_len:
raise RuntimeError("No inputs provided.")
if args_len and kwargs_len:
raise RuntimeError("Cannot specify args and kwargs at the same time")
placeholders = self._create_input_placeholders_fn()
if args_len:
if args_len != len(placeholders):
raise RuntimeError(f"Expected {len(placeholders)} inputs, got {args_len}.")
for input, value in zip(placeholders, args):
input.set_data_from_numpy(value.cpu().numpy())
else:
for input in placeholders:
value = kwargs[input.name]
input.set_data_from_numpy(value.cpu().numpy())
return placeholders
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论