Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
e78aeac9
Unverified
提交
e78aeac9
authored
8月 04, 2021
作者:
Glenn Jocher
提交者:
GitHub
8月 04, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Evolve in CSV format (#4307)
* Update evolution to CSV format * Update * Update * Update * Update * Update * reset args * reset args * reset args * plot_results() fix * Cleanup * Cleanup2
上级
4103ce9a
显示空白字符变更
内嵌
并排
正在显示
6 个修改的文件
包含
75 行增加
和
65 行删除
+75
-65
.dockerignore
.dockerignore
+1
-1
.gitignore
.gitignore
+0
-1
train.py
train.py
+18
-14
general.py
utils/general.py
+29
-21
__init__.py
utils/loggers/__init__.py
+2
-3
plots.py
utils/plots.py
+25
-25
没有找到文件。
.dockerignore
浏览文件 @
e78aeac9
...
@@ -8,7 +8,7 @@ coco
...
@@ -8,7 +8,7 @@ coco
storage.googleapis.com
storage.googleapis.com
data/samples/*
data/samples/*
**/results*.
txt
**/results*.
csv
*.jpg
*.jpg
# Neural Network weights -----------------------------------------------------------------------------------------------
# Neural Network weights -----------------------------------------------------------------------------------------------
...
...
.gitignore
浏览文件 @
e78aeac9
...
@@ -30,7 +30,6 @@ data/*
...
@@ -30,7 +30,6 @@ data/*
!data/images/bus.jpg
!data/images/bus.jpg
!data/*.sh
!data/*.sh
results*.txt
results*.csv
results*.csv
# Datasets -------------------------------------------------------------------------------------------------------------
# Datasets -------------------------------------------------------------------------------------------------------------
...
...
train.py
浏览文件 @
e78aeac9
...
@@ -37,7 +37,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima
...
@@ -37,7 +37,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima
check_requirements
,
print_mutation
,
set_logging
,
one_cycle
,
colorstr
,
methods
check_requirements
,
print_mutation
,
set_logging
,
one_cycle
,
colorstr
,
methods
from
utils.downloads
import
attempt_download
from
utils.downloads
import
attempt_download
from
utils.loss
import
ComputeLoss
from
utils.loss
import
ComputeLoss
from
utils.plots
import
plot_labels
,
plot_evol
ution
from
utils.plots
import
plot_labels
,
plot_evol
ve
from
utils.torch_utils
import
ModelEMA
,
select_device
,
intersect_dicts
,
torch_distributed_zero_first
,
de_parallel
from
utils.torch_utils
import
ModelEMA
,
select_device
,
intersect_dicts
,
torch_distributed_zero_first
,
de_parallel
from
utils.loggers.wandb.wandb_utils
import
check_wandb_resume
from
utils.loggers.wandb.wandb_utils
import
check_wandb_resume
from
utils.metrics
import
fitness
from
utils.metrics
import
fitness
...
@@ -367,7 +367,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
...
@@ -367,7 +367,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
fi
=
fitness
(
np
.
array
(
results
)
.
reshape
(
1
,
-
1
))
# weighted combination of [P, R, mAP@.5, mAP@.5-.95]
fi
=
fitness
(
np
.
array
(
results
)
.
reshape
(
1
,
-
1
))
# weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if
fi
>
best_fitness
:
if
fi
>
best_fitness
:
best_fitness
=
fi
best_fitness
=
fi
callbacks
.
on_fit_epoch_end
(
mloss
,
results
,
lr
,
epoch
,
best_fitness
,
fi
)
log_vals
=
list
(
mloss
)
+
list
(
results
)
+
lr
callbacks
.
on_fit_epoch_end
(
log_vals
,
epoch
,
best_fitness
,
fi
)
# Save model
# Save model
if
(
not
nosave
)
or
(
final_epoch
and
not
evolve
):
# if save
if
(
not
nosave
)
or
(
final_epoch
and
not
evolve
):
# if save
...
@@ -464,7 +465,7 @@ def main(opt):
...
@@ -464,7 +465,7 @@ def main(opt):
check_requirements
(
requirements
=
FILE
.
parent
/
'requirements.txt'
,
exclude
=
[
'thop'
])
check_requirements
(
requirements
=
FILE
.
parent
/
'requirements.txt'
,
exclude
=
[
'thop'
])
# Resume
# Resume
if
opt
.
resume
and
not
check_wandb_resume
(
opt
):
# resume an interrupted run
if
opt
.
resume
and
not
check_wandb_resume
(
opt
)
and
not
opt
.
evolve
:
# resume an interrupted run
ckpt
=
opt
.
resume
if
isinstance
(
opt
.
resume
,
str
)
else
get_latest_run
()
# specified or most recent path
ckpt
=
opt
.
resume
if
isinstance
(
opt
.
resume
,
str
)
else
get_latest_run
()
# specified or most recent path
assert
os
.
path
.
isfile
(
ckpt
),
'ERROR: --resume checkpoint does not exist'
assert
os
.
path
.
isfile
(
ckpt
),
'ERROR: --resume checkpoint does not exist'
with
open
(
Path
(
ckpt
)
.
parent
.
parent
/
'opt.yaml'
)
as
f
:
with
open
(
Path
(
ckpt
)
.
parent
.
parent
/
'opt.yaml'
)
as
f
:
...
@@ -474,8 +475,10 @@ def main(opt):
...
@@ -474,8 +475,10 @@ def main(opt):
else
:
else
:
opt
.
data
,
opt
.
cfg
,
opt
.
hyp
=
check_file
(
opt
.
data
),
check_file
(
opt
.
cfg
),
check_file
(
opt
.
hyp
)
# check files
opt
.
data
,
opt
.
cfg
,
opt
.
hyp
=
check_file
(
opt
.
data
),
check_file
(
opt
.
cfg
),
check_file
(
opt
.
hyp
)
# check files
assert
len
(
opt
.
cfg
)
or
len
(
opt
.
weights
),
'either --cfg or --weights must be specified'
assert
len
(
opt
.
cfg
)
or
len
(
opt
.
weights
),
'either --cfg or --weights must be specified'
opt
.
name
=
'evolve'
if
opt
.
evolve
else
opt
.
name
if
opt
.
evolve
:
opt
.
save_dir
=
str
(
increment_path
(
Path
(
opt
.
project
)
/
opt
.
name
,
exist_ok
=
opt
.
exist_ok
or
opt
.
evolve
))
opt
.
project
=
'runs/evolve'
opt
.
exist_ok
=
opt
.
resume
opt
.
save_dir
=
str
(
increment_path
(
Path
(
opt
.
project
)
/
opt
.
name
,
exist_ok
=
opt
.
exist_ok
))
# DDP mode
# DDP mode
device
=
select_device
(
opt
.
device
,
batch_size
=
opt
.
batch_size
)
device
=
select_device
(
opt
.
device
,
batch_size
=
opt
.
batch_size
)
...
@@ -533,17 +536,17 @@ def main(opt):
...
@@ -533,17 +536,17 @@ def main(opt):
hyp
=
yaml
.
safe_load
(
f
)
# load hyps dict
hyp
=
yaml
.
safe_load
(
f
)
# load hyps dict
if
'anchors'
not
in
hyp
:
# anchors commented in hyp.yaml
if
'anchors'
not
in
hyp
:
# anchors commented in hyp.yaml
hyp
[
'anchors'
]
=
3
hyp
[
'anchors'
]
=
3
opt
.
noval
,
opt
.
nosave
=
True
,
True
# only val/save final epoch
opt
.
noval
,
opt
.
nosave
,
save_dir
=
True
,
True
,
Path
(
opt
.
save_dir
)
# only val/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file
=
Path
(
opt
.
save_dir
)
/
'hyp_evolved.yaml'
# save best result here
evolve_yaml
,
evolve_csv
=
save_dir
/
'hyp_evolve.yaml'
,
save_dir
/
'evolve.csv'
if
opt
.
bucket
:
if
opt
.
bucket
:
os
.
system
(
f
'gsutil cp gs://{opt.bucket}/evolve.
txt .'
)
# download evolve.txt
if exists
os
.
system
(
f
'gsutil cp gs://{opt.bucket}/evolve.
csv {save_dir}'
)
# download evolve.csv
if exists
for
_
in
range
(
opt
.
evolve
):
# generations to evolve
for
_
in
range
(
opt
.
evolve
):
# generations to evolve
if
Path
(
'evolve.txt'
)
.
exists
():
# if evolve.txt
exists: select best hyps and mutate
if
evolve_csv
.
exists
():
# if evolve.csv
exists: select best hyps and mutate
# Select parent(s)
# Select parent(s)
parent
=
'single'
# parent selection method: 'single' or 'weighted'
parent
=
'single'
# parent selection method: 'single' or 'weighted'
x
=
np
.
loadtxt
(
'evolve.txt'
,
ndmin
=
2
)
x
=
np
.
loadtxt
(
evolve_csv
,
ndmin
=
2
,
delimiter
=
','
,
skiprows
=
1
)
n
=
min
(
5
,
len
(
x
))
# number of previous results to consider
n
=
min
(
5
,
len
(
x
))
# number of previous results to consider
x
=
x
[
np
.
argsort
(
-
fitness
(
x
))][:
n
]
# top n mutations
x
=
x
[
np
.
argsort
(
-
fitness
(
x
))][:
n
]
# top n mutations
w
=
fitness
(
x
)
-
fitness
(
x
)
.
min
()
+
1E-6
# weights (sum > 0)
w
=
fitness
(
x
)
-
fitness
(
x
)
.
min
()
+
1E-6
# weights (sum > 0)
...
@@ -575,12 +578,13 @@ def main(opt):
...
@@ -575,12 +578,13 @@ def main(opt):
results
=
train
(
hyp
.
copy
(),
opt
,
device
)
results
=
train
(
hyp
.
copy
(),
opt
,
device
)
# Write mutation results
# Write mutation results
print_mutation
(
hyp
.
copy
(),
results
,
yaml_file
,
opt
.
bucket
)
print_mutation
(
results
,
hyp
.
copy
(),
save_dir
,
opt
.
bucket
)
# Plot results
# Plot results
plot_evolution
(
yaml_file
)
plot_evolve
(
evolve_csv
)
print
(
f
'Hyperparameter evolution complete. Best results saved as: {yaml_file}
\n
'
print
(
f
'Hyperparameter evolution finished
\n
'
f
'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}'
)
f
"Results saved to {colorstr('bold', save_dir)}"
f
'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}'
)
def
run
(
**
kwargs
):
def
run
(
**
kwargs
):
...
...
utils/general.py
浏览文件 @
e78aeac9
...
@@ -615,35 +615,43 @@ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_op
...
@@ -615,35 +615,43 @@ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_op
print
(
f
"Optimizer stripped from {f},{(' saved as
%
s,'
%
s) if s else ''} {mb:.1f}MB"
)
print
(
f
"Optimizer stripped from {f},{(' saved as
%
s,'
%
s) if s else ''} {mb:.1f}MB"
)
def
print_mutation
(
hyp
,
results
,
yaml_file
=
'hyp_evolved.yaml'
,
bucket
=
''
):
def
print_mutation
(
results
,
hyp
,
save_dir
,
bucket
):
# Print mutation results to evolve.txt (for use with train.py --evolve)
evolve_csv
,
results_csv
,
evolve_yaml
=
save_dir
/
'evolve.csv'
,
save_dir
/
'results.csv'
,
save_dir
/
'hyp_evolve.yaml'
a
=
'
%10
s'
*
len
(
hyp
)
%
tuple
(
hyp
.
keys
())
# hyperparam keys
keys
=
(
'metrics/precision'
,
'metrics/recall'
,
'metrics/mAP_0.5'
,
'metrics/mAP_0.5:0.95'
,
b
=
'
%10.3
g'
*
len
(
hyp
)
%
tuple
(
hyp
.
values
())
# hyperparam values
'val/box_loss'
,
'val/obj_loss'
,
'val/cls_loss'
)
+
tuple
(
hyp
.
keys
())
# [results + hyps]
c
=
'
%10.4
g'
*
len
(
results
)
%
results
# results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
keys
=
tuple
(
x
.
strip
()
for
x
in
keys
)
print
(
'
\n
%
s
\n
%
s
\n
Evolved fitness:
%
s
\n
'
%
(
a
,
b
,
c
))
vals
=
results
+
tuple
(
hyp
.
values
())
n
=
len
(
keys
)
# Download (optional)
if
bucket
:
if
bucket
:
url
=
'gs://
%
s/evolve.txt'
%
bucket
url
=
f
'gs://{bucket}/evolve.csv'
if
gsutil_getsize
(
url
)
>
(
os
.
path
.
getsize
(
'evolve.txt'
)
if
os
.
path
.
exists
(
'evolve.txt'
)
else
0
):
if
gsutil_getsize
(
url
)
>
(
os
.
path
.
getsize
(
evolve_csv
)
if
os
.
path
.
exists
(
evolve_csv
)
else
0
):
os
.
system
(
'gsutil cp
%
s .'
%
url
)
# download evolve.txt if larger than local
os
.
system
(
f
'gsutil cp {url} {save_dir}'
)
# download evolve.csv if larger than local
# Log to evolve.csv
s
=
''
if
evolve_csv
.
exists
()
else
((
'
%20
s,'
*
n
%
keys
)
.
rstrip
(
','
)
+
'
\n
'
)
# add header
with
open
(
evolve_csv
,
'a'
)
as
f
:
f
.
write
(
s
+
(
'
%20.5
g,'
*
n
%
vals
)
.
rstrip
(
','
)
+
'
\n
'
)
with
open
(
'evolve.txt'
,
'a'
)
as
f
:
# append result
# Print to screen
f
.
write
(
c
+
b
+
'
\n
'
)
print
(
colorstr
(
'evolve: '
)
+
', '
.
join
(
f
'{x.strip():>20s}'
for
x
in
keys
))
x
=
np
.
unique
(
np
.
loadtxt
(
'evolve.txt'
,
ndmin
=
2
),
axis
=
0
)
# load unique rows
print
(
colorstr
(
'evolve: '
)
+
', '
.
join
(
f
'{x:20.5g}'
for
x
in
vals
),
end
=
'
\n\n\n
'
)
x
=
x
[
np
.
argsort
(
-
fitness
(
x
))]
# sort
np
.
savetxt
(
'evolve.txt'
,
x
,
'
%10.3
g'
)
# save sort by fitness
# Save yaml
# Save yaml
for
i
,
k
in
enumerate
(
hyp
.
keys
()):
with
open
(
evolve_yaml
,
'w'
)
as
f
:
hyp
[
k
]
=
float
(
x
[
0
,
i
+
7
])
data
=
pd
.
read_csv
(
evolve_csv
)
with
open
(
yaml_file
,
'w'
)
as
f
:
data
=
data
.
rename
(
columns
=
lambda
x
:
x
.
strip
())
# strip keys
results
=
tuple
(
x
[
0
,
:
7
])
i
=
np
.
argmax
(
fitness
(
data
.
values
[:,
:
7
]))
#
c
=
'
%10.4
g'
*
len
(
results
)
%
results
# results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
f
.
write
(
f
'# YOLOv5 Hyperparameter Evolution Results
\n
'
+
f
.
write
(
'# Hyperparameter Evolution Results
\n
# Generations:
%
g
\n
# Metrics: '
%
len
(
x
)
+
c
+
'
\n\n
'
)
f
'# Best generation: {i}
\n
'
+
f
'# Last generation: {len(data)}
\n
'
+
f
'# '
+
', '
.
join
(
f
'{x.strip():>20s}'
for
x
in
keys
[:
7
])
+
'
\n
'
+
f
'# '
+
', '
.
join
(
f
'{x:>20.5g}'
for
x
in
data
.
values
[
i
,
:
7
])
+
'
\n\n
'
)
yaml
.
safe_dump
(
hyp
,
f
,
sort_keys
=
False
)
yaml
.
safe_dump
(
hyp
,
f
,
sort_keys
=
False
)
if
bucket
:
if
bucket
:
os
.
system
(
'gsutil cp evolve.txt
%
s gs://
%
s'
%
(
yaml_file
,
bucket
)
)
# upload
os
.
system
(
f
'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}'
)
# upload
def
apply_classifier
(
x
,
model
,
img
,
im0
):
def
apply_classifier
(
x
,
model
,
img
,
im0
):
...
...
utils/loggers/__init__.py
浏览文件 @
e78aeac9
...
@@ -95,9 +95,8 @@ class Loggers():
...
@@ -95,9 +95,8 @@ class Loggers():
files
=
sorted
(
self
.
save_dir
.
glob
(
'val*.jpg'
))
files
=
sorted
(
self
.
save_dir
.
glob
(
'val*.jpg'
))
self
.
wandb
.
log
({
"Validation"
:
[
wandb
.
Image
(
str
(
f
),
caption
=
f
.
name
)
for
f
in
files
]})
self
.
wandb
.
log
({
"Validation"
:
[
wandb
.
Image
(
str
(
f
),
caption
=
f
.
name
)
for
f
in
files
]})
def
on_fit_epoch_end
(
self
,
mloss
,
results
,
lr
,
epoch
,
best_fitness
,
fi
):
def
on_fit_epoch_end
(
self
,
vals
,
epoch
,
best_fitness
,
fi
):
# Callback runs at the end of each fit (train+val) epoch
# Callback runs at the end of each fit (train+val) epoch
vals
=
list
(
mloss
)
+
list
(
results
)
+
lr
x
=
{
k
:
v
for
k
,
v
in
zip
(
self
.
keys
,
vals
)}
# dict
x
=
{
k
:
v
for
k
,
v
in
zip
(
self
.
keys
,
vals
)}
# dict
if
self
.
csv
:
if
self
.
csv
:
file
=
self
.
save_dir
/
'results.csv'
file
=
self
.
save_dir
/
'results.csv'
...
@@ -123,7 +122,7 @@ class Loggers():
...
@@ -123,7 +122,7 @@ class Loggers():
def
on_train_end
(
self
,
last
,
best
,
plots
,
epoch
):
def
on_train_end
(
self
,
last
,
best
,
plots
,
epoch
):
# Callback runs on training end
# Callback runs on training end
if
plots
:
if
plots
:
plot_results
(
dir
=
self
.
save_dir
)
# save results.png
plot_results
(
file
=
self
.
save_dir
/
'results.csv'
)
# save results.png
files
=
[
'results.png'
,
'confusion_matrix.png'
,
*
[
f
'{x}_curve.png'
for
x
in
(
'F1'
,
'PR'
,
'P'
,
'R'
)]]
files
=
[
'results.png'
,
'confusion_matrix.png'
,
*
[
f
'{x}_curve.png'
for
x
in
(
'F1'
,
'PR'
,
'P'
,
'R'
)]]
files
=
[(
self
.
save_dir
/
f
)
for
f
in
files
if
(
self
.
save_dir
/
f
)
.
exists
()]
# filter
files
=
[(
self
.
save_dir
/
f
)
for
f
in
files
if
(
self
.
save_dir
/
f
)
.
exists
()]
# filter
...
...
utils/plots.py
浏览文件 @
e78aeac9
...
@@ -325,30 +325,6 @@ def plot_labels(labels, names=(), save_dir=Path('')):
...
@@ -325,30 +325,6 @@ def plot_labels(labels, names=(), save_dir=Path('')):
plt
.
close
()
plt
.
close
()
def
plot_evolution
(
yaml_file
=
'data/hyp.finetune.yaml'
):
# from utils.plots import *; plot_evolution()
# Plot hyperparameter evolution results in evolve.txt
with
open
(
yaml_file
)
as
f
:
hyp
=
yaml
.
safe_load
(
f
)
x
=
np
.
loadtxt
(
'evolve.txt'
,
ndmin
=
2
)
f
=
fitness
(
x
)
# weights = (f - f.min()) ** 2 # for weighted results
plt
.
figure
(
figsize
=
(
10
,
12
),
tight_layout
=
True
)
matplotlib
.
rc
(
'font'
,
**
{
'size'
:
8
})
for
i
,
(
k
,
v
)
in
enumerate
(
hyp
.
items
()):
y
=
x
[:,
i
+
7
]
# mu = (y * weights).sum() / weights.sum() # best weighted result
mu
=
y
[
f
.
argmax
()]
# best single result
plt
.
subplot
(
6
,
5
,
i
+
1
)
plt
.
scatter
(
y
,
f
,
c
=
hist2d
(
y
,
f
,
20
),
cmap
=
'viridis'
,
alpha
=.
8
,
edgecolors
=
'none'
)
plt
.
plot
(
mu
,
f
.
max
(),
'k+'
,
markersize
=
15
)
plt
.
title
(
'
%
s =
%.3
g'
%
(
k
,
mu
),
fontdict
=
{
'size'
:
9
})
# limit to 40 characters
if
i
%
5
!=
0
:
plt
.
yticks
([])
print
(
'
%15
s:
%.3
g'
%
(
k
,
mu
))
plt
.
savefig
(
'evolve.png'
,
dpi
=
200
)
print
(
'
\n
Plot saved as evolve.png'
)
def
profile_idetection
(
start
=
0
,
stop
=
0
,
labels
=
(),
save_dir
=
''
):
def
profile_idetection
(
start
=
0
,
stop
=
0
,
labels
=
(),
save_dir
=
''
):
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
ax
=
plt
.
subplots
(
2
,
4
,
figsize
=
(
12
,
6
),
tight_layout
=
True
)[
1
]
.
ravel
()
ax
=
plt
.
subplots
(
2
,
4
,
figsize
=
(
12
,
6
),
tight_layout
=
True
)[
1
]
.
ravel
()
...
@@ -381,7 +357,31 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
...
@@ -381,7 +357,31 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
plt
.
savefig
(
Path
(
save_dir
)
/
'idetection_profile.png'
,
dpi
=
200
)
plt
.
savefig
(
Path
(
save_dir
)
/
'idetection_profile.png'
,
dpi
=
200
)
def
plot_results
(
file
=
''
,
dir
=
''
):
def
plot_evolve
(
evolve_csv
=
Path
(
'path/to/evolve.csv'
)):
# from utils.plots import *; plot_evolve()
# Plot evolve.csv hyp evolution results
data
=
pd
.
read_csv
(
evolve_csv
)
keys
=
[
x
.
strip
()
for
x
in
data
.
columns
]
x
=
data
.
values
f
=
fitness
(
x
)
j
=
np
.
argmax
(
f
)
# max fitness index
plt
.
figure
(
figsize
=
(
10
,
12
),
tight_layout
=
True
)
matplotlib
.
rc
(
'font'
,
**
{
'size'
:
8
})
for
i
,
k
in
enumerate
(
keys
[
7
:]):
v
=
x
[:,
7
+
i
]
mu
=
v
[
j
]
# best single result
plt
.
subplot
(
6
,
5
,
i
+
1
)
plt
.
scatter
(
v
,
f
,
c
=
hist2d
(
v
,
f
,
20
),
cmap
=
'viridis'
,
alpha
=.
8
,
edgecolors
=
'none'
)
plt
.
plot
(
mu
,
f
.
max
(),
'k+'
,
markersize
=
15
)
plt
.
title
(
'
%
s =
%.3
g'
%
(
k
,
mu
),
fontdict
=
{
'size'
:
9
})
# limit to 40 characters
if
i
%
5
!=
0
:
plt
.
yticks
([])
print
(
'
%15
s:
%.3
g'
%
(
k
,
mu
))
f
=
evolve_csv
.
with_suffix
(
'.png'
)
# filename
plt
.
savefig
(
f
,
dpi
=
200
)
print
(
f
'Saved {f}'
)
def
plot_results
(
file
=
'path/to/results.csv'
,
dir
=
''
):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir
=
Path
(
file
)
.
parent
if
file
else
Path
(
dir
)
save_dir
=
Path
(
file
)
.
parent
if
file
else
Path
(
dir
)
fig
,
ax
=
plt
.
subplots
(
2
,
5
,
figsize
=
(
12
,
6
),
tight_layout
=
True
)
fig
,
ax
=
plt
.
subplots
(
2
,
5
,
figsize
=
(
12
,
6
),
tight_layout
=
True
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论