Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
fbf41e09
Unverified
提交
fbf41e09
authored
6月 20, 2021
作者:
Glenn Jocher
提交者:
GitHub
6月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add `train.run()` method (#3700)
* Update train.py explicit arguments * Update train.py * Add run method
上级
c1af67dc
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
42 行增加
和
33 行删除
+42
-33
train.py
train.py
+42
-33
没有找到文件。
train.py
浏览文件 @
fbf41e09
...
...
@@ -46,8 +46,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
opt
,
device
,
):
save_dir
,
epochs
,
batch_size
,
weights
,
single_cls
=
\
opt
.
save_dir
,
opt
.
epochs
,
opt
.
batch_size
,
opt
.
weights
,
opt
.
single_cls
save_dir
,
epochs
,
batch_size
,
weights
,
single_cls
,
evolve
,
data
,
cfg
,
resume
,
notest
,
nosave
,
workers
,
=
\
opt
.
save_dir
,
opt
.
epochs
,
opt
.
batch_size
,
opt
.
weights
,
opt
.
single_cls
,
opt
.
evolve
,
opt
.
data
,
opt
.
cfg
,
\
opt
.
resume
,
opt
.
notest
,
opt
.
nosave
,
opt
.
workers
# Directories
save_dir
=
Path
(
save_dir
)
...
...
@@ -70,34 +71,34 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
yaml
.
safe_dump
(
vars
(
opt
),
f
,
sort_keys
=
False
)
# Configure
plots
=
not
opt
.
evolve
# create plots
plots
=
not
evolve
# create plots
cuda
=
device
.
type
!=
'cpu'
init_seeds
(
2
+
RANK
)
with
open
(
opt
.
data
)
as
f
:
with
open
(
data
)
as
f
:
data_dict
=
yaml
.
safe_load
(
f
)
# data dict
# Loggers
loggers
=
{
'wandb'
:
None
,
'tb'
:
None
}
# loggers dict
if
RANK
in
[
-
1
,
0
]:
# TensorBoard
if
not
opt
.
evolve
:
if
not
evolve
:
prefix
=
colorstr
(
'tensorboard: '
)
logger
.
info
(
f
"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/"
)
loggers
[
'tb'
]
=
SummaryWriter
(
opt
.
save_dir
)
loggers
[
'tb'
]
=
SummaryWriter
(
str
(
save_dir
)
)
# W&B
opt
.
hyp
=
hyp
# add hyperparameters
run_id
=
torch
.
load
(
weights
)
.
get
(
'wandb_id'
)
if
weights
.
endswith
(
'.pt'
)
and
os
.
path
.
isfile
(
weights
)
else
None
wandb_logger
=
WandbLogger
(
opt
,
save_dir
.
stem
,
run_id
,
data_dict
)
loggers
[
'wandb'
]
=
wandb_logger
.
wandb
if
loggers
[
'wandb'
]:
data_dict
=
wandb_logger
.
data_dict
if
wandb_logger
.
wandb
:
weights
,
epochs
,
hyp
=
opt
.
weights
,
opt
.
epochs
,
opt
.
hyp
# may update weights, epochs if resuming
nc
=
1
if
single_cls
else
int
(
data_dict
[
'nc'
])
# number of classes
names
=
[
'item'
]
if
single_cls
and
len
(
data_dict
[
'names'
])
!=
1
else
data_dict
[
'names'
]
# class names
assert
len
(
names
)
==
nc
,
'
%
g names found for nc=
%
g dataset in
%
s'
%
(
len
(
names
),
nc
,
opt
.
data
)
# check
is_coco
=
opt
.
data
.
endswith
(
'coco.yaml'
)
and
nc
==
80
# COCO dataset
assert
len
(
names
)
==
nc
,
'
%
g names found for nc=
%
g dataset in
%
s'
%
(
len
(
names
),
nc
,
data
)
# check
is_coco
=
data
.
endswith
(
'coco.yaml'
)
and
nc
==
80
# COCO dataset
# Model
pretrained
=
weights
.
endswith
(
'.pt'
)
...
...
@@ -105,14 +106,14 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
with
torch_distributed_zero_first
(
RANK
):
weights
=
attempt_download
(
weights
)
# download if not found locally
ckpt
=
torch
.
load
(
weights
,
map_location
=
device
)
# load checkpoint
model
=
Model
(
opt
.
cfg
or
ckpt
[
'model'
]
.
yaml
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
'anchors'
))
.
to
(
device
)
# create
exclude
=
[
'anchor'
]
if
(
opt
.
cfg
or
hyp
.
get
(
'anchors'
))
and
not
opt
.
resume
else
[]
# exclude keys
model
=
Model
(
cfg
or
ckpt
[
'model'
]
.
yaml
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
'anchors'
))
.
to
(
device
)
# create
exclude
=
[
'anchor'
]
if
(
cfg
or
hyp
.
get
(
'anchors'
))
and
not
resume
else
[]
# exclude keys
state_dict
=
ckpt
[
'model'
]
.
float
()
.
state_dict
()
# to FP32
state_dict
=
intersect_dicts
(
state_dict
,
model
.
state_dict
(),
exclude
=
exclude
)
# intersect
model
.
load_state_dict
(
state_dict
,
strict
=
False
)
# load
logger
.
info
(
'Transferred
%
g/
%
g items from
%
s'
%
(
len
(
state_dict
),
len
(
model
.
state_dict
()),
weights
))
# report
else
:
model
=
Model
(
opt
.
cfg
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
'anchors'
))
.
to
(
device
)
# create
model
=
Model
(
cfg
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
'anchors'
))
.
to
(
device
)
# create
with
torch_distributed_zero_first
(
RANK
):
check_dataset
(
data_dict
)
# check
train_path
=
data_dict
[
'train'
]
...
...
@@ -182,7 +183,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
# Epochs
start_epoch
=
ckpt
[
'epoch'
]
+
1
if
opt
.
resume
:
if
resume
:
assert
start_epoch
>
0
,
'
%
s training to
%
g epochs is finished, nothing to resume.'
%
(
weights
,
epochs
)
if
epochs
<
start_epoch
:
logger
.
info
(
'
%
s has been trained for
%
g epochs. Fine-tuning for
%
g additional epochs.'
%
...
...
@@ -210,20 +211,20 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
# Trainloader
dataloader
,
dataset
=
create_dataloader
(
train_path
,
imgsz
,
batch_size
//
WORLD_SIZE
,
gs
,
single_cls
,
hyp
=
hyp
,
augment
=
True
,
cache
=
opt
.
cache_images
,
rect
=
opt
.
rect
,
rank
=
RANK
,
workers
=
opt
.
workers
,
workers
=
workers
,
image_weights
=
opt
.
image_weights
,
quad
=
opt
.
quad
,
prefix
=
colorstr
(
'train: '
))
mlc
=
np
.
concatenate
(
dataset
.
labels
,
0
)[:,
0
]
.
max
()
# max label class
nb
=
len
(
dataloader
)
# number of batches
assert
mlc
<
nc
,
'Label class
%
g exceeds nc=
%
g in
%
s. Possible class labels are 0-
%
g'
%
(
mlc
,
nc
,
opt
.
data
,
nc
-
1
)
assert
mlc
<
nc
,
'Label class
%
g exceeds nc=
%
g in
%
s. Possible class labels are 0-
%
g'
%
(
mlc
,
nc
,
data
,
nc
-
1
)
# Process 0
if
RANK
in
[
-
1
,
0
]:
testloader
=
create_dataloader
(
test_path
,
imgsz_test
,
batch_size
//
WORLD_SIZE
*
2
,
gs
,
single_cls
,
hyp
=
hyp
,
cache
=
opt
.
cache_images
and
not
opt
.
notest
,
rect
=
True
,
rank
=-
1
,
workers
=
opt
.
workers
,
hyp
=
hyp
,
cache
=
opt
.
cache_images
and
not
notest
,
rect
=
True
,
rank
=-
1
,
workers
=
workers
,
pad
=
0.5
,
prefix
=
colorstr
(
'val: '
))[
0
]
if
not
opt
.
resume
:
if
not
resume
:
labels
=
np
.
concatenate
(
dataset
.
labels
,
0
)
c
=
torch
.
tensor
(
labels
[:,
0
])
# classes
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
...
...
@@ -356,8 +357,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
with
warnings
.
catch_warnings
():
warnings
.
simplefilter
(
'ignore'
)
# suppress jit trace warning
loggers
[
'tb'
]
.
add_graph
(
torch
.
jit
.
trace
(
de_parallel
(
model
),
imgs
[
0
:
1
],
strict
=
False
),
[])
elif
plots
and
ni
==
10
and
wandb_logger
.
wandb
:
wandb_logger
.
log
({
'Mosaics'
:
[
wandb_logger
.
wandb
.
Image
(
str
(
x
),
caption
=
x
.
name
)
for
x
in
elif
plots
and
ni
==
10
and
loggers
[
'wandb'
]
:
wandb_logger
.
log
({
'Mosaics'
:
[
loggers
[
'wandb'
]
.
Image
(
str
(
x
),
caption
=
x
.
name
)
for
x
in
save_dir
.
glob
(
'train*.jpg'
)
if
x
.
exists
()]})
# end batch ------------------------------------------------------------------------------------------------
...
...
@@ -371,7 +372,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
# mAP
ema
.
update_attr
(
model
,
include
=
[
'yaml'
,
'nc'
,
'hyp'
,
'gr'
,
'names'
,
'stride'
,
'class_weights'
])
final_epoch
=
epoch
+
1
==
epochs
if
not
opt
.
notest
or
final_epoch
:
# Calculate mAP
if
not
notest
or
final_epoch
:
# Calculate mAP
wandb_logger
.
current_epoch
=
epoch
+
1
results
,
maps
,
_
=
test
.
test
(
data_dict
,
batch_size
=
batch_size
//
WORLD_SIZE
*
2
,
...
...
@@ -398,7 +399,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
for
x
,
tag
in
zip
(
list
(
mloss
[:
-
1
])
+
list
(
results
)
+
lr
,
tags
):
if
loggers
[
'tb'
]:
loggers
[
'tb'
]
.
add_scalar
(
tag
,
x
,
epoch
)
# TensorBoard
if
wandb_logger
.
wandb
:
if
loggers
[
'wandb'
]
:
wandb_logger
.
log
({
tag
:
x
})
# W&B
# Update best mAP
...
...
@@ -408,7 +409,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
wandb_logger
.
end_epoch
(
best_result
=
best_fitness
==
fi
)
# Save model
if
(
not
opt
.
nosave
)
or
(
final_epoch
and
not
opt
.
evolve
):
# if save
if
(
not
nosave
)
or
(
final_epoch
and
not
evolve
):
# if save
ckpt
=
{
'epoch'
:
epoch
,
'best_fitness'
:
best_fitness
,
'training_results'
:
results_file
.
read_text
(),
...
...
@@ -416,13 +417,13 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
'ema'
:
deepcopy
(
ema
.
ema
)
.
half
(),
'updates'
:
ema
.
updates
,
'optimizer'
:
optimizer
.
state_dict
(),
'wandb_id'
:
wandb_logger
.
wandb_run
.
id
if
wandb_logger
.
wandb
else
None
}
'wandb_id'
:
wandb_logger
.
wandb_run
.
id
if
loggers
[
'wandb'
]
else
None
}
# Save last, best and delete
torch
.
save
(
ckpt
,
last
)
if
best_fitness
==
fi
:
torch
.
save
(
ckpt
,
best
)
if
wandb_logger
.
wandb
:
if
loggers
[
'wandb'
]
:
if
((
epoch
+
1
)
%
opt
.
save_period
==
0
and
not
final_epoch
)
and
opt
.
save_period
!=
-
1
:
wandb_logger
.
log_model
(
last
.
parent
,
opt
,
epoch
,
fi
,
best_model
=
best_fitness
==
fi
)
del
ckpt
...
...
@@ -433,15 +434,15 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
logger
.
info
(
f
'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.
\n
'
)
if
plots
:
plot_results
(
save_dir
=
save_dir
)
# save as results.png
if
wandb_logger
.
wandb
:
if
loggers
[
'wandb'
]
:
files
=
[
'results.png'
,
'confusion_matrix.png'
,
*
[
f
'{x}_curve.png'
for
x
in
(
'F1'
,
'PR'
,
'P'
,
'R'
)]]
wandb_logger
.
log
({
"Results"
:
[
wandb_logger
.
wandb
.
Image
(
str
(
save_dir
/
f
),
caption
=
f
)
for
f
in
files
wandb_logger
.
log
({
"Results"
:
[
loggers
[
'wandb'
]
.
Image
(
str
(
save_dir
/
f
),
caption
=
f
)
for
f
in
files
if
(
save_dir
/
f
)
.
exists
()]})
if
not
opt
.
evolve
:
if
not
evolve
:
if
is_coco
:
# COCO dataset
for
m
in
[
last
,
best
]
if
best
.
exists
()
else
[
last
]:
# speed, mAP tests
results
,
_
,
_
=
test
.
test
(
opt
.
data
,
results
,
_
,
_
=
test
.
test
(
data
,
batch_size
=
batch_size
//
WORLD_SIZE
*
2
,
imgsz
=
imgsz_test
,
conf_thres
=
0.001
,
...
...
@@ -457,8 +458,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
for
f
in
last
,
best
:
if
f
.
exists
():
strip_optimizer
(
f
)
# strip optimizers
if
wandb_logger
.
wandb
:
# Log the stripped model
wandb_logger
.
wandb
.
log_artifact
(
str
(
best
if
best
.
exists
()
else
last
),
type
=
'model'
,
if
loggers
[
'wandb'
]
:
# Log the stripped model
loggers
[
'wandb'
]
.
log_artifact
(
str
(
best
if
best
.
exists
()
else
last
),
type
=
'model'
,
name
=
'run_'
+
wandb_logger
.
wandb_run
.
id
+
'_model'
,
aliases
=
[
'latest'
,
'best'
,
'stripped'
])
wandb_logger
.
finish_run
()
...
...
@@ -467,7 +468,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
return
results
def
parse_opt
():
def
parse_opt
(
known
=
False
):
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--weights'
,
type
=
str
,
default
=
'yolov5s.pt'
,
help
=
'initial weights path'
)
parser
.
add_argument
(
'--cfg'
,
type
=
str
,
default
=
''
,
help
=
'model.yaml path'
)
...
...
@@ -503,7 +504,7 @@ def parse_opt():
parser
.
add_argument
(
'--save_period'
,
type
=
int
,
default
=-
1
,
help
=
'Log model after every "save_period" epoch'
)
parser
.
add_argument
(
'--artifact_alias'
,
type
=
str
,
default
=
"latest"
,
help
=
'version of dataset artifact to be used'
)
parser
.
add_argument
(
'--local_rank'
,
type
=
int
,
default
=-
1
,
help
=
'DDP parameter, do not modify'
)
opt
=
parser
.
parse_args
()
opt
=
parser
.
parse_
known_args
()[
0
]
if
known
else
parser
.
parse_
args
()
return
opt
...
...
@@ -633,6 +634,14 @@ def main(opt):
f
'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}'
)
def
run
(
**
kwargs
):
# Usage: import train; train.run(imgsz=320, weights='yolov5m.pt')
opt
=
parse_opt
(
True
)
for
k
,
v
in
kwargs
.
items
():
setattr
(
opt
,
k
,
v
)
main
(
opt
)
if
__name__
==
"__main__"
:
opt
=
parse_opt
()
main
(
opt
)
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论