Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
fe809b8d
提交
fe809b8d
authored
8月 17, 2022
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Created using Colaboratory
上级
7c9486e1
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
152 行增加
和
152 行删除
+152
-152
tutorial.ipynb
tutorial.ipynb
+152
-152
没有找到文件。
tutorial.ipynb
浏览文件 @
fe809b8d
...
...
@@ -17,7 +17,7 @@
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"
c31d2039ccf74c22b67841f4877d1186
": {
"
57c562894aed45cd9a107d0455e3e3f4
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
...
...
@@ -32,14 +32,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_
d4bba1727c714d94ad58a72bffa07c4c
",
"IPY_MODEL_
9aeff9f1780b45f892422fdc96e56913
",
"IPY_MODEL_
bf55a7c71d074d3fa88b10b997820825
"
"IPY_MODEL_
040d53c6cc924350bcb656cd21a7c713
",
"IPY_MODEL_
e029890942a74c098408ce5a9a566d51
",
"IPY_MODEL_
8fb991c03e434566a4297b6ab9446f89
"
],
"layout": "IPY_MODEL_
d8b66044e2fb4f5b916696834d880c81
"
"layout": "IPY_MODEL_
a9a376923a7742d89fb335db709c7a7e
"
}
},
"
d4bba1727c714d94ad58a72bffa07c4c
": {
"
040d53c6cc924350bcb656cd21a7c713
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
...
...
@@ -54,13 +54,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
102e1deda239436fa72751c58202fa0f
",
"layout": "IPY_MODEL_
8b4276ac834c4735bf60ee9b761b9962
",
"placeholder": "",
"style": "IPY_MODEL_
4fd4431ced6c42368e18424912b877e4
",
"style": "IPY_MODEL_
52cc8da75b724198856617247541cb1e
",
"value": "100%"
}
},
"
9aeff9f1780b45f892422fdc96e56913
": {
"
e029890942a74c098408ce5a9a566d51
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
...
...
@@ -76,15 +76,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
cdd709c4f40941bea1b2053523c9fac8
",
"layout": "IPY_MODEL_
b6652f46480243c4adf60e6440043d6f
",
"max": 818322941,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_
a1ef2d8de2b741c78ca5d938e2ddbcdf
",
"style": "IPY_MODEL_
e502754177ff4ea8abf82a6e9ac77a4a
",
"value": 818322941
}
},
"
bf55a7c71d074d3fa88b10b997820825
": {
"
8fb991c03e434566a4297b6ab9446f89
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
...
...
@@ -99,13 +99,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_
0dbce99bb6184238842cbec0587d564a
",
"layout": "IPY_MODEL_
447398becdb04836b5ffb5915318db07
",
"placeholder": "",
"style": "IPY_MODEL_
91ff5f93f2a24c5790ab29e34796594
6",
"value": " 780M/780M [01:1
0<00:00, 10.5
MB/s]"
"style": "IPY_MODEL_
2fddcb27ad4a4caa81ff51111f8d0ed
6",
"value": " 780M/780M [01:1
7<00:00, 12.3
MB/s]"
}
},
"
d8b66044e2fb4f5b916696834d880c81
": {
"
a9a376923a7742d89fb335db709c7a7e
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -157,7 +157,7 @@
"width": null
}
},
"
102e1deda239436fa72751c58202fa0f
": {
"
8b4276ac834c4735bf60ee9b761b9962
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -209,7 +209,7 @@
"width": null
}
},
"
4fd4431ced6c42368e18424912b877e4
": {
"
52cc8da75b724198856617247541cb1e
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -224,7 +224,7 @@
"description_width": ""
}
},
"
cdd709c4f40941bea1b2053523c9fac8
": {
"
b6652f46480243c4adf60e6440043d6f
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -276,7 +276,7 @@
"width": null
}
},
"
a1ef2d8de2b741c78ca5d938e2ddbcdf
": {
"
e502754177ff4ea8abf82a6e9ac77a4a
": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -292,7 +292,7 @@
"description_width": ""
}
},
"
0dbce99bb6184238842cbec0587d564a
": {
"
447398becdb04836b5ffb5915318db07
": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
...
...
@@ -344,7 +344,7 @@
"width": null
}
},
"
91ff5f93f2a24c5790ab29e34796594
6": {
"
2fddcb27ad4a4caa81ff51111f8d0ed
6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
...
...
@@ -404,7 +404,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
185d0979-edcd-4860-e6fb-b8a27dbf5096
"
"outputId": "
e0f693e4-413b-4cc8-ae7e-91537da370b0
"
},
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
...
...
@@ -415,13 +415,13 @@
"import utils\n",
"display = utils.notebook_init() # checks"
],
"execution_count":
null
,
"execution_count":
1
,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"YOLOv5 🚀 v6.
1-370-g20f1b7e Python-3.7.13 torch-1.12.0
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
"YOLOv5 🚀 v6.
2-2-g7c9486e Python-3.7.13 torch-1.12.1
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
]
},
{
...
...
@@ -461,29 +461,29 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
4b13989f-32a4-4ef0-b403-06ff3aac255c
"
"outputId": "
941d625b-01a1-4f1b-dfd2-d9ef1c945715
"
},
"source": [
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
"#display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
"#
display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
],
"execution_count":
null
,
"execution_count":
2
,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
"YOLOv5 🚀 v6.
1-370-g20f1b7e Python-3.7.13 torch-1.12.0
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"YOLOv5 🚀 v6.
2-2-g7c9486e Python-3.7.13 torch-1.12.1
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.
1
/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:00<00:00, 5
3.9
MB/s]\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.
2
/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:00<00:00, 5
0.5
MB/s]\n",
"\n",
"Fusing layers... \n",
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.01
6
s)\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.02
1
s)\n",
"Speed: 0.6ms pre-process, 1
8.6ms inference, 25.0
ms NMS per image at shape (1, 3, 640, 640)\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.01
4
s)\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.02
0
s)\n",
"Speed: 0.6ms pre-process, 1
7.0ms inference, 20.2
ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
]
}
...
...
@@ -527,27 +527,27 @@
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"
c31d2039ccf74c22b67841f4877d1186
",
"
d4bba1727c714d94ad58a72bffa07c4c
",
"
9aeff9f1780b45f892422fdc96e56913
",
"
bf55a7c71d074d3fa88b10b997820825
",
"
d8b66044e2fb4f5b916696834d880c81
",
"
102e1deda239436fa72751c58202fa0f
",
"
4fd4431ced6c42368e18424912b877e4
",
"
cdd709c4f40941bea1b2053523c9fac8
",
"
a1ef2d8de2b741c78ca5d938e2ddbcdf
",
"
0dbce99bb6184238842cbec0587d564a
",
"
91ff5f93f2a24c5790ab29e34796594
6"
"
57c562894aed45cd9a107d0455e3e3f4
",
"
040d53c6cc924350bcb656cd21a7c713
",
"
e029890942a74c098408ce5a9a566d51
",
"
8fb991c03e434566a4297b6ab9446f89
",
"
a9a376923a7742d89fb335db709c7a7e
",
"
8b4276ac834c4735bf60ee9b761b9962
",
"
52cc8da75b724198856617247541cb1e
",
"
b6652f46480243c4adf60e6440043d6f
",
"
e502754177ff4ea8abf82a6e9ac77a4a
",
"
447398becdb04836b5ffb5915318db07
",
"
2fddcb27ad4a4caa81ff51111f8d0ed
6"
]
},
"outputId": "
a9004b06-37a6-41ed-a1f2-ac956f3963b3
"
"outputId": "
d593b41a-55e7-48a5-e285-5df449edc8c0
"
},
"source": [
"# Download COCO val\n",
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
],
"execution_count":
null
,
"execution_count":
3
,
"outputs": [
{
"output_type": "display_data",
...
...
@@ -558,7 +558,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "
c31d2039ccf74c22b67841f4877d1186
"
"model_id": "
57c562894aed45cd9a107d0455e3e3f4
"
}
},
"metadata": {}
...
...
@@ -572,48 +572,48 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
c0f29758-4ec8-4def-893d-0efd6ed5b7f
4"
"outputId": "
701132a6-9ca8-4e1f-c89f-5d38893a6fc
4"
},
"source": [
"# Run YOLOv5x on COCO val\n",
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
],
"execution_count":
null
,
"execution_count":
4
,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
"YOLOv5 🚀 v6.
1-370-g20f1b7e Python-3.7.13 torch-1.12.0
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"YOLOv5 🚀 v6.
2-2-g7c9486e Python-3.7.13 torch-1.12.1
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.
1
/yolov5x.pt to yolov5x.pt...\n",
"100% 166M/166M [00:
35<00:00, 4.97
MB/s]\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.
2
/yolov5x.pt to yolov5x.pt...\n",
"100% 166M/166M [00:
11<00:00, 15.1
MB/s]\n",
"\n",
"Fusing layers... \n",
"YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n",
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
"100% 755k/755k [00:00<00:00, 4
9.4
MB/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 10
716.86
it/s]\n",
"100% 755k/755k [00:00<00:00, 4
8.6
MB/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 10
889.87
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:0
8<00:00, 2.2
8it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:0
5<00:00, 2.3
8it/s]\n",
" all 5000 36335 0.743 0.625 0.683 0.504\n",
"Speed: 0.1ms pre-process, 4.
6ms inference, 1.2
ms NMS per image at shape (32, 3, 640, 640)\n",
"Speed: 0.1ms pre-process, 4.
7ms inference, 1.0
ms NMS per image at shape (32, 3, 640, 640)\n",
"\n",
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
"loading annotations into memory...\n",
"Done (t=0.
41
s)\n",
"Done (t=0.
39
s)\n",
"creating index...\n",
"index created!\n",
"Loading and preparing results...\n",
"DONE (t=5.
64
s)\n",
"DONE (t=5.
53
s)\n",
"creating index...\n",
"index created!\n",
"Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n",
"DONE (t=7
2.86
s).\n",
"DONE (t=7
3.01
s).\n",
"Accumulating evaluation results...\n",
"DONE (t=1
4.20
s).\n",
"DONE (t=1
5.27
s).\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n",
...
...
@@ -745,13 +745,13 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "
bce1b4bd-1a14-4c07-aebd-6c11e91ad24b
"
"outputId": "
50a9318f-d438-41d5-db95-928f1842c057
"
},
"source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
],
"execution_count":
null
,
"execution_count":
5
,
"outputs": [
{
"output_type": "stream",
...
...
@@ -759,17 +759,17 @@
"text": [
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 🚀 v6.
1-370-g20f1b7e Python-3.7.13 torch-1.12.0
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"YOLOv5 🚀 v6.
2-2-g7c9486e Python-3.7.13 torch-1.12.1
+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases\n",
"\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀
runs
in ClearML\n",
"\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
"\n",
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
"Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
"100% 6.66M/6.66M [00:00<00:00,
75.2
MB/s]\n",
"Dataset download success ✅ (
0.7
s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"100% 6.66M/6.66M [00:00<00:00,
12.4
MB/s]\n",
"Dataset download success ✅ (
1.3
s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
...
...
@@ -802,12 +802,12 @@
"Transferred 349/349 items from yolov5s.pt\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(
always_apply=False, p=0.01, blur_limit=(3, 7)), MedianBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), ToGray(always_apply=False, p=0.01), CLAHE(always_apply=False,
p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00,
7926.40
it/s]\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(
p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(
p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00,
8516.89
it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00,
975.81
it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00,
1043.44
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 25
8.62
it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 25
9.20
it/s]\n",
"Plotting labels to runs/train/exp/labels.jpg... \n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
...
...
@@ -817,19 +817,19 @@
"Starting training for 3 epochs...\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 0/2 3.76G 0.04529 0.06712 0.01835 323 640: 100% 8/8 [00:0
5<00:00, 1.59
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
05
it/s]\n",
" all 128 929 0.
806 0.593 0.718 0.47
2\n",
" 0/2 3.76G 0.04529 0.06712 0.01835 323 640: 100% 8/8 [00:0
4<00:00, 1.83
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
21
it/s]\n",
" all 128 929 0.
666 0.611 0.684 0.45
2\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 1/2 4.79G 0.04244 0.06423 0.01611 236 640: 100% 8/8 [00:00<00:00, 8.1
1
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
20
it/s]\n",
" all 128 929 0.
811 0.615 0.74 0.493
\n",
" 1/2 4.79G 0.04244 0.06423 0.01611 236 640: 100% 8/8 [00:00<00:00, 8.1
5
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
45
it/s]\n",
" all 128 929 0.
746 0.626 0.722 0.481
\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 2/2 4.79G 0.04695 0.06875 0.0173 189 640: 100% 8/8 [00:00<00:00,
9.12
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
24
it/s]\n",
" all 128 929 0.7
84 0.634 0.747 0.502
\n",
" 2/2 4.79G 0.04695 0.06875 0.0173 189 640: 100% 8/8 [00:00<00:00,
8.91
it/s]\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.
56
it/s]\n",
" all 128 929 0.7
74 0.647 0.746 0.499
\n",
"\n",
"3 epochs completed in 0.003 hours.\n",
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
...
...
@@ -838,79 +838,79 @@
"Validating runs/train/exp/weights/best.pt...\n",
"Fusing layers... \n",
"Model summary: 213 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.2
0
it/s]\n",
" all 128 929 0.7
81 0.637 0.747 0.502
\n",
" person 128 254
0.872 0.693 0.81
0.534\n",
" bicycle 128 6
1 0.407 0.68 0.425
\n",
" car 128 46 0.7
43 0.413 0.581 0.247
\n",
" motorcycle 128 5
1 0.988 0.995 0.692
\n",
" airplane 128 6 0.9
65 1 0.995 0.717
\n",
" bus 128 7
0.706 0.714 0.814 0.697
\n",
" train 128 3 1 0.5
82 0.806 0.477
\n",
" truck 128 12 0.6
02 0.417 0.495 0.271
\n",
" boat 128 6 0.9
61 0.333 0.464 0.224
\n",
" traffic light 128 14
0.517 0.155 0.364 0.216
\n",
" stop sign 128 2 0.
782
1 0.995 0.821\n",
" bench 128 9 0.82
9 0.539 0.701 0.288
\n",
" bird 128 16 0.9
24 1 0.995 0.655
\n",
" cat 128 4 0.8
91 1 0.995 0.809
\n",
" dog 128 9 1 0.6
59 0.883 0.604
\n",
" horse 128 2
0.808 1 0.995 0.67
2\n",
" elephant 128 17 0.9
73 0.882 0.936 0.733
\n",
" bear 128 1 0.
692
1 0.995 0.995\n",
" zebra 128 4 0.8
72
1 0.995 0.922\n",
" giraffe 128 9 0.
865 0.889 0.975 0.736
\n",
" backpack 128 6
1 0.547 0.787 0.372
\n",
" umbrella 128 18 0.8
23 0.667 0.889 0.50
4\n",
" handbag 128 19 0.
516 0.105 0.304 0.153
\n",
" tie 128 7 0.
696 0.714 0.741 0.482
\n",
" suitcase 128 4 0.
716 1 0.995 0.553
\n",
" frisbee 128 5 0.7
15 0.8 0.8 0.7
1\n",
" skis 128 1
0.694 1 0.995 0.398
\n",
" snowboard 128 7 0.8
93 0.714 0.855 0.569
\n",
" sports ball 128 6 0.6
5
9 0.667 0.602 0.307\n",
" kite 128 10
0.683 0.434 0.611 0.242
\n",
" baseball bat 128 4
0.838 0.5 0.55 0.146
\n",
" baseball glove 128 7 0.5
72 0.429 0.463 0.294
\n",
" skateboard 128 5 0.
697 0.6 0.702 0.476
\n",
" tennis racket 128 7
0.62 0.429 0.544 0.29
\n",
" bottle 128 18 0.5
91 0.402 0.572 0.295
\n",
" wine glass 128 16 0.7
47 0.921 0.913 0.529
\n",
" cup 128 36 0.82
4 0.639 0.826
0.535\n",
" fork 128 6 1 0.3
19 0.518 0.353
\n",
" knife 128 16 0.7
68 0.62 0.654 0.374
\n",
" spoon 128 22 0.8
24 0.427 0.65 0.382
\n",
" bowl 128 28
0.8 0.643 0.726 0.525
\n",
" banana 128 1 0.8
78 1 0.995 0.208
\n",
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.2
2
it/s]\n",
" all 128 929 0.7
74 0.647 0.746 0.499
\n",
" person 128 254
0.87 0.697 0.806
0.534\n",
" bicycle 128 6
0.759 0.528 0.725 0.444
\n",
" car 128 46 0.7
74 0.413 0.554 0.239
\n",
" motorcycle 128 5
0.791 1 0.962 0.595
\n",
" airplane 128 6 0.9
81 1 0.995 0.689
\n",
" bus 128 7
0.65 0.714 0.755 0.691
\n",
" train 128 3 1 0.5
73 0.995 0.602
\n",
" truck 128 12 0.6
13 0.333 0.489 0.263
\n",
" boat 128 6 0.9
33 0.333 0.507 0.209
\n",
" traffic light 128 14
0.76 0.228 0.367 0.209
\n",
" stop sign 128 2 0.
821
1 0.995 0.821\n",
" bench 128 9 0.82
4 0.526 0.676 0.31
\n",
" bird 128 16 0.9
74 1 0.995 0.611
\n",
" cat 128 4 0.8
59 1 0.995 0.772
\n",
" dog 128 9 1 0.6
66 0.883 0.647
\n",
" horse 128 2
0.84 1 0.995 0.62
2\n",
" elephant 128 17 0.9
26 0.882 0.93 0.716
\n",
" bear 128 1 0.
709
1 0.995 0.995\n",
" zebra 128 4 0.8
66
1 0.995 0.922\n",
" giraffe 128 9 0.
777 0.778 0.891 0.705
\n",
" backpack 128 6
0.894 0.5 0.753 0.294
\n",
" umbrella 128 18 0.8
76 0.783 0.899 0.5
4\n",
" handbag 128 19 0.
799 0.209 0.335 0.179
\n",
" tie 128 7 0.
782 0.714 0.787 0.478
\n",
" suitcase 128 4 0.
658 1 0.945 0.581
\n",
" frisbee 128 5 0.7
26 0.8 0.76 0.70
1\n",
" skis 128 1
0.8 1 0.995 0.103
\n",
" snowboard 128 7 0.8
15 0.714 0.852 0.574
\n",
" sports ball 128 6 0.6
4
9 0.667 0.602 0.307\n",
" kite 128 10
0.7 0.47 0.546 0.206
\n",
" baseball bat 128 4
1 0.497 0.544 0.182
\n",
" baseball glove 128 7 0.5
98 0.429 0.47 0.31
\n",
" skateboard 128 5 0.
851 0.6 0.685 0.495
\n",
" tennis racket 128 7
0.754 0.429 0.544 0.34
\n",
" bottle 128 18 0.5
64 0.333 0.53 0.264
\n",
" wine glass 128 16 0.7
15 0.875 0.907 0.528
\n",
" cup 128 36 0.82
5 0.639 0.803
0.535\n",
" fork 128 6 1 0.3
29 0.5 0.384
\n",
" knife 128 16 0.7
06 0.625 0.666 0.405
\n",
" spoon 128 22 0.8
36 0.464 0.619 0.379
\n",
" bowl 128 28
0.763 0.607 0.717 0.516
\n",
" banana 128 1 0.8
86 1 0.995 0.399
\n",
" sandwich 128 2 1 0 0.62 0.546\n",
" orange 128 4 1
0.896 0.995 0.691
\n",
" broccoli 128 11 0.5
86 0.364 0.481 0.349
\n",
" carrot 128 24
0.702 0.589 0.722 0.475
\n",
" hot dog 128 2 0.5
24 1 0.828 0.7
95\n",
" pizza 128 5 0.81
1 0.865 0.962 0.695
\n",
" donut 128 14 0.6
53 1 0.964 0.853
\n",
" cake 128 4 0.8
52
1 0.995 0.822\n",
" chair 128 35 0.53
6 0.571 0.593 0.31
\n",
" couch 128 6
1 0.63 0.75 0.51
8\n",
" potted plant 128 14 0.7
75 0.738 0.839 0.478
\n",
" bed 128 3
1 0 0.72 0.423
\n",
" dining table 128 13 0.
817 0.348 0.592 0.381
\n",
" toilet 128 2
0.782 1 0.995 0.895
\n",
" tv 128 2 0.
711 1 0.995 0.821
\n",
" laptop 128 3 1 0 0.
789 0.42
\n",
" mouse 128 2 1 0
0.0798 0.0399
\n",
" remote 128 8 1
0.611 0.63 0.549
\n",
" cell phone 128 8 0.6
85 0.375 0.428 0.245
\n",
" microwave 128 3 0.
803 1 0.995 0.767
\n",
" oven 128 5 0.
42 0.4 0.444 0.306
\n",
" sink 128 6 0.
288 0.167 0.34 0.247
\n",
" refrigerator 128 5 0.
632 0.8 0.805 0.572
\n",
" book 128 29 0.
494 0.207 0.332 0.161
\n",
" clock 128 9 0.7
91 0.889 0.93 0.75
\n",
" vase 128 2 0.3
55
1 0.995 0.895\n",
" scissors 128 1 1 0 0.332 0.0
663
\n",
" teddy bear 128 21 0.8
39 0.571 0.767 0.487
\n",
" toothbrush 128 5 0.
829 0.974 0.962 0.644
\n",
" orange 128 4 1
0.75 0.995 0.622
\n",
" broccoli 128 11 0.5
48 0.443 0.467 0.35
\n",
" carrot 128 24
0.7 0.585 0.699 0.458
\n",
" hot dog 128 2 0.5
02 1 0.995 0.9
95\n",
" pizza 128 5 0.81
3 1 0.962 0.747
\n",
" donut 128 14 0.6
62 1 0.96 0.838
\n",
" cake 128 4 0.8
68
1 0.995 0.822\n",
" chair 128 35 0.53
8 0.571 0.594 0.322
\n",
" couch 128 6
0.924 0.667 0.828 0.53
8\n",
" potted plant 128 14 0.7
31 0.786 0.824 0.495
\n",
" bed 128 3
0.736 0.333 0.83 0.425
\n",
" dining table 128 13 0.
624 0.259 0.494 0.336
\n",
" toilet 128 2
0.79 1 0.995 0.846
\n",
" tv 128 2 0.
574 1 0.995 0.796
\n",
" laptop 128 3 1 0 0.
695 0.367
\n",
" mouse 128 2 1 0
0.173 0.0864
\n",
" remote 128 8 1
0.62 0.634 0.557
\n",
" cell phone 128 8 0.6
12 0.397 0.437 0.221
\n",
" microwave 128 3 0.
741 1 0.995 0.766
\n",
" oven 128 5 0.
33 0.4 0.449 0.3
\n",
" sink 128 6 0.
444 0.333 0.331 0.231
\n",
" refrigerator 128 5 0.
561 0.8 0.798 0.546
\n",
" book 128 29 0.
635 0.276 0.355 0.164
\n",
" clock 128 9 0.7
66 0.889 0.888 0.73
\n",
" vase 128 2 0.3
03
1 0.995 0.895\n",
" scissors 128 1 1 0 0.332 0.0
397
\n",
" teddy bear 128 21 0.8
42 0.508 0.739 0.499
\n",
" toothbrush 128 5 0.
787 1 0.928 0.59
\n",
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
]
}
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论