Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
08e97a2f
提交
08e97a2f
authored
8月 28, 2020
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update hyperparameters to add lrf, anchors
上级
9776e709
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
43 行增加
和
30 行删除
+43
-30
hyp.finetune.yaml
data/hyp.finetune.yaml
+31
-24
hyp.scratch.yaml
data/hyp.scratch.yaml
+3
-1
train.py
train.py
+9
-5
没有找到文件。
data/hyp.finetune.yaml
浏览文件 @
08e97a2f
# Hyperparameters for VOC fine
-
tuning
# Hyperparameters for VOC finetuning
# python train.py --batch 64 --
cfg '' --
weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0
:
0.01
# initial learning rate (SGD=1E-2, Adam=1E-3)
# Hyperparameter Evolution Results
momentum
:
0.94
# SGD momentum/Adam beta1
# Generations: 51
weight_decay
:
0.0005
# optimizer weight decay 5e-4
# P R mAP.5 mAP.5:.95 box obj cls
giou
:
0.05
# GIoU loss gain
# Metrics: 0.625 0.926 0.89 0.677 0.0111 0.00849 0.00124
cls
:
0.4
# cls loss gain
cls_pw
:
1.0
# cls BCELoss positive_weight
lr0
:
0.00447
obj
:
0.5
# obj loss gain (scale with pixels)
lrf
:
0.114
obj_pw
:
1.0
# obj BCELoss positive_weight
momentum
:
0.873
iou_t
:
0.20
# IoU training threshold
weight_decay
:
0.00047
anchor_t
:
4.0
# anchor-multiple threshold
giou
:
0.0306
fl_gamma
:
0.0
# focal loss gamma (efficientDet default gamma=1.5)
cls
:
0.211
hsv_h
:
0.015
# image HSV-Hue augmentation (fraction)
cls_pw
:
0.546
hsv_s
:
0.7
# image HSV-Saturation augmentation (fraction)
obj
:
0.421
hsv_v
:
0.4
# image HSV-Value augmentation (fraction)
obj_pw
:
0.972
degrees
:
1.0
# image rotation (+/- deg)
iou_t
:
0.2
translate
:
0.1
# image translation (+/- fraction)
anchor_t
:
2.26
scale
:
0.6
# image scale (+/- gain)
# anchors: 5.07
shear
:
1.0
# image shear (+/- deg)
fl_gamma
:
0.0
perspective
:
0.0
# image perspective (+/- fraction), range 0-0.001
hsv_h
:
0.0154
flipud
:
0.01
# image flip up-down (probability)
hsv_s
:
0.9
fliplr
:
0.5
# image flip left-right (probability)
hsv_v
:
0.619
mixup
:
0.2
# image mixup (probability)
degrees
:
0.404
translate
:
0.206
scale
:
0.86
shear
:
0.795
perspective
:
0.0
flipud
:
0.00756
fliplr
:
0.5
mixup
:
0.153
data/hyp.scratch.yaml
浏览文件 @
08e97a2f
...
@@ -4,15 +4,17 @@
...
@@ -4,15 +4,17 @@
lr0
:
0.01
# initial learning rate (SGD=1E-2, Adam=1E-3)
lr0
:
0.01
# initial learning rate (SGD=1E-2, Adam=1E-3)
lrf
:
0.2
# final OneCycleLR learning rate (lr0 * lrf)
momentum
:
0.937
# SGD momentum/Adam beta1
momentum
:
0.937
# SGD momentum/Adam beta1
weight_decay
:
0.0005
# optimizer weight decay 5e-4
weight_decay
:
0.0005
# optimizer weight decay 5e-4
giou
:
0.05
#
GIoU
loss gain
giou
:
0.05
#
box
loss gain
cls
:
0.5
# cls loss gain
cls
:
0.5
# cls loss gain
cls_pw
:
1.0
# cls BCELoss positive_weight
cls_pw
:
1.0
# cls BCELoss positive_weight
obj
:
1.0
# obj loss gain (scale with pixels)
obj
:
1.0
# obj loss gain (scale with pixels)
obj_pw
:
1.0
# obj BCELoss positive_weight
obj_pw
:
1.0
# obj BCELoss positive_weight
iou_t
:
0.20
# IoU training threshold
iou_t
:
0.20
# IoU training threshold
anchor_t
:
4.0
# anchor-multiple threshold
anchor_t
:
4.0
# anchor-multiple threshold
# anchors: 0 # anchors per output grid (0 to ignore)
fl_gamma
:
0.0
# focal loss gamma (efficientDet default gamma=1.5)
fl_gamma
:
0.0
# focal loss gamma (efficientDet default gamma=1.5)
hsv_h
:
0.015
# image HSV-Hue augmentation (fraction)
hsv_h
:
0.015
# image HSV-Hue augmentation (fraction)
hsv_s
:
0.7
# image HSV-Saturation augmentation (fraction)
hsv_s
:
0.7
# image HSV-Saturation augmentation (fraction)
...
...
train.py
浏览文件 @
08e97a2f
...
@@ -53,7 +53,7 @@ def train(hyp, opt, device, tb_writer=None):
...
@@ -53,7 +53,7 @@ def train(hyp, opt, device, tb_writer=None):
cuda
=
device
.
type
!=
'cpu'
cuda
=
device
.
type
!=
'cpu'
init_seeds
(
2
+
rank
)
init_seeds
(
2
+
rank
)
with
open
(
opt
.
data
)
as
f
:
with
open
(
opt
.
data
)
as
f
:
data_dict
=
yaml
.
load
(
f
,
Loader
=
yaml
.
FullLoader
)
#
model
dict
data_dict
=
yaml
.
load
(
f
,
Loader
=
yaml
.
FullLoader
)
#
data
dict
with
torch_distributed_zero_first
(
rank
):
with
torch_distributed_zero_first
(
rank
):
check_dataset
(
data_dict
)
# check
check_dataset
(
data_dict
)
# check
train_path
=
data_dict
[
'train'
]
train_path
=
data_dict
[
'train'
]
...
@@ -67,6 +67,8 @@ def train(hyp, opt, device, tb_writer=None):
...
@@ -67,6 +67,8 @@ def train(hyp, opt, device, tb_writer=None):
with
torch_distributed_zero_first
(
rank
):
with
torch_distributed_zero_first
(
rank
):
attempt_download
(
weights
)
# download if not found locally
attempt_download
(
weights
)
# download if not found locally
ckpt
=
torch
.
load
(
weights
,
map_location
=
device
)
# load checkpoint
ckpt
=
torch
.
load
(
weights
,
map_location
=
device
)
# load checkpoint
# if hyp['anchors']:
# ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
model
=
Model
(
opt
.
cfg
or
ckpt
[
'model'
]
.
yaml
,
ch
=
3
,
nc
=
nc
)
.
to
(
device
)
# create
model
=
Model
(
opt
.
cfg
or
ckpt
[
'model'
]
.
yaml
,
ch
=
3
,
nc
=
nc
)
.
to
(
device
)
# create
exclude
=
[
'anchor'
]
if
opt
.
cfg
else
[]
# exclude keys
exclude
=
[
'anchor'
]
if
opt
.
cfg
else
[]
# exclude keys
state_dict
=
ckpt
[
'model'
]
.
float
()
.
state_dict
()
# to FP32
state_dict
=
ckpt
[
'model'
]
.
float
()
.
state_dict
()
# to FP32
...
@@ -111,7 +113,7 @@ def train(hyp, opt, device, tb_writer=None):
...
@@ -111,7 +113,7 @@ def train(hyp, opt, device, tb_writer=None):
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
lf
=
lambda
x
:
((
(
1
+
math
.
cos
(
x
*
math
.
pi
/
epochs
))
/
2
)
**
1.0
)
*
0.8
+
0.2
# cosine
lf
=
lambda
x
:
((
1
+
math
.
cos
(
x
*
math
.
pi
/
epochs
))
/
2
)
*
(
1
-
hyp
[
'lrf'
])
+
hyp
[
'lrf'
]
# cosine
scheduler
=
lr_scheduler
.
LambdaLR
(
optimizer
,
lr_lambda
=
lf
)
scheduler
=
lr_scheduler
.
LambdaLR
(
optimizer
,
lr_lambda
=
lf
)
# plot_lr_scheduler(optimizer, scheduler, epochs)
# plot_lr_scheduler(optimizer, scheduler, epochs)
...
@@ -459,6 +461,7 @@ if __name__ == '__main__':
...
@@ -459,6 +461,7 @@ if __name__ == '__main__':
else
:
else
:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta
=
{
'lr0'
:
(
1
,
1e-5
,
1e-1
),
# initial learning rate (SGD=1E-2, Adam=1E-3)
meta
=
{
'lr0'
:
(
1
,
1e-5
,
1e-1
),
# initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf'
:
(
1
,
0.01
,
1.0
),
# final OneCycleLR learning rate (lr0 * lrf)
'momentum'
:
(
0.1
,
0.6
,
0.98
),
# SGD momentum/Adam beta1
'momentum'
:
(
0.1
,
0.6
,
0.98
),
# SGD momentum/Adam beta1
'weight_decay'
:
(
1
,
0.0
,
0.001
),
# optimizer weight decay
'weight_decay'
:
(
1
,
0.0
,
0.001
),
# optimizer weight decay
'giou'
:
(
1
,
0.02
,
0.2
),
# GIoU loss gain
'giou'
:
(
1
,
0.02
,
0.2
),
# GIoU loss gain
...
@@ -468,6 +471,7 @@ if __name__ == '__main__':
...
@@ -468,6 +471,7 @@ if __name__ == '__main__':
'obj_pw'
:
(
1
,
0.5
,
2.0
),
# obj BCELoss positive_weight
'obj_pw'
:
(
1
,
0.5
,
2.0
),
# obj BCELoss positive_weight
'iou_t'
:
(
0
,
0.1
,
0.7
),
# IoU training threshold
'iou_t'
:
(
0
,
0.1
,
0.7
),
# IoU training threshold
'anchor_t'
:
(
1
,
2.0
,
8.0
),
# anchor-multiple threshold
'anchor_t'
:
(
1
,
2.0
,
8.0
),
# anchor-multiple threshold
# 'anchors': (1, 2.0, 10.0), # anchors per output grid (0 to ignore)
'fl_gamma'
:
(
0
,
0.0
,
2.0
),
# focal loss gamma (efficientDet default gamma=1.5)
'fl_gamma'
:
(
0
,
0.0
,
2.0
),
# focal loss gamma (efficientDet default gamma=1.5)
'hsv_h'
:
(
1
,
0.0
,
0.1
),
# image HSV-Hue augmentation (fraction)
'hsv_h'
:
(
1
,
0.0
,
0.1
),
# image HSV-Hue augmentation (fraction)
'hsv_s'
:
(
1
,
0.0
,
0.9
),
# image HSV-Saturation augmentation (fraction)
'hsv_s'
:
(
1
,
0.0
,
0.9
),
# image HSV-Saturation augmentation (fraction)
...
@@ -476,9 +480,9 @@ if __name__ == '__main__':
...
@@ -476,9 +480,9 @@ if __name__ == '__main__':
'translate'
:
(
1
,
0.0
,
0.9
),
# image translation (+/- fraction)
'translate'
:
(
1
,
0.0
,
0.9
),
# image translation (+/- fraction)
'scale'
:
(
1
,
0.0
,
0.9
),
# image scale (+/- gain)
'scale'
:
(
1
,
0.0
,
0.9
),
# image scale (+/- gain)
'shear'
:
(
1
,
0.0
,
10.0
),
# image shear (+/- deg)
'shear'
:
(
1
,
0.0
,
10.0
),
# image shear (+/- deg)
'perspective'
:
(
1
,
0.0
,
0.001
),
# image perspective (+/- fraction), range 0-0.001
'perspective'
:
(
0
,
0.0
,
0.001
),
# image perspective (+/- fraction), range 0-0.001
'flipud'
:
(
0
,
0.0
,
1.0
),
# image flip up-down (probability)
'flipud'
:
(
1
,
0.0
,
1.0
),
# image flip up-down (probability)
'fliplr'
:
(
1
,
0.0
,
1.0
),
# image flip left-right (probability)
'fliplr'
:
(
0
,
0.0
,
1.0
),
# image flip left-right (probability)
'mixup'
:
(
1
,
0.0
,
1.0
)}
# image mixup (probability)
'mixup'
:
(
1
,
0.0
,
1.0
)}
# image mixup (probability)
assert
opt
.
local_rank
==
-
1
,
'DDP mode not implemented for --evolve'
assert
opt
.
local_rank
==
-
1
,
'DDP mode not implemented for --evolve'
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论