Unverified 提交 0cae7576 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

utils/wandb_logging PEP8 reformat (#2755)

* wandb_logging PEP8 reformat * Update wandb_utils.py
上级 b5de52c4
import argparse
from pathlib import Path
import yaml
from wandb_utils import WandbLogger
from utils.datasets import LoadImagesAndLabels
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
......@@ -21,6 +19,6 @@ if __name__ == '__main__':
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
opt = parser.parse_args()
opt.resume = False # Explicitly disallow resume check for dataset upload Job
opt.resume = False # Explicitly disallow resume check for dataset upload job
create_dataset_artifact(opt)
import argparse
import json
import os
import shutil
import sys
from pathlib import Path
import torch
import yaml
from datetime import datetime
from pathlib import Path
from tqdm import tqdm
sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
......@@ -33,6 +30,7 @@ def check_wandb_config_file(data_config_file):
return wandb_config
return data_config_file
def get_run_info(run_path):
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
run_id = run_path.stem
......@@ -40,11 +38,12 @@ def get_run_info(run_path):
model_artifact_name = 'run_' + run_id + '_model'
return run_id, project, model_artifact_name
def check_wandb_resume(opt):
process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
if isinstance(opt.resume, str):
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
if opt.global_rank not in [-1, 0]: # For resuming DDP runs
if opt.global_rank not in [-1, 0]: # For resuming DDP runs
run_id, project, model_artifact_name = get_run_info(opt.resume)
api = wandb.Api()
artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
......@@ -53,6 +52,7 @@ def check_wandb_resume(opt):
return True
return None
def process_wandb_config_ddp_mode(opt):
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
......@@ -63,7 +63,7 @@ def process_wandb_config_ddp_mode(opt):
train_dir = train_artifact.download()
train_path = Path(train_dir) / 'data/images/'
data_dict['train'] = str(train_path)
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
api = wandb.Api()
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
......@@ -71,12 +71,11 @@ def process_wandb_config_ddp_mode(opt):
val_path = Path(val_dir) / 'data/images/'
data_dict['val'] = str(val_path)
if train_dir or val_dir:
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
with open(ddp_data_path, 'w') as f:
yaml.dump(data_dict, f)
opt.data = ddp_data_path
class WandbLogger():
def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
......@@ -84,7 +83,7 @@ class WandbLogger():
self.job_type = job_type
self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
# It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
if isinstance(opt.resume, str): # checks resume from artifact
if isinstance(opt.resume, str): # checks resume from artifact
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
run_id, project, model_artifact_name = get_run_info(opt.resume)
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
......@@ -98,7 +97,7 @@ class WandbLogger():
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
name=name,
job_type=job_type,
id=run_id) if not wandb.run else wandb.run
id=run_id) if not wandb.run else wandb.run
if self.wandb_run:
if self.job_type == 'Training':
if not opt.resume:
......@@ -110,15 +109,15 @@ class WandbLogger():
if self.job_type == 'Dataset Creation':
self.data_dict = self.check_and_upload_dataset(opt)
else:
print(f"{colorstr('wandb: ')}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
prefix = colorstr('wandb: ')
print(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
def check_and_upload_dataset(self, opt):
assert wandb, 'Install wandb to upload dataset'
check_dataset(self.data_dict)
config_path = self.log_dataset_artifact(opt.data,
opt.single_cls,
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
opt.single_cls,
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
print("Created dataset config file ", config_path)
with open(config_path) as f:
wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论