提交 17ac94b7 authored 作者: Glenn Jocher's avatar Glenn Jocher

Created using Colaboratory

上级 bdd88e1e
......@@ -16,7 +16,7 @@
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"811fd52fef65422c8267bafcde8a2c3d": {
"1f8e9b8ebded4175b2eaa9f75c3ceb00": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
......@@ -28,15 +28,15 @@
"_view_count": null,
"_view_module_version": "1.5.0",
"box_style": "",
"layout": "IPY_MODEL_8f41b90117224eef9133a9c3a103dbba",
"layout": "IPY_MODEL_0a1246a73077468ab80e979cc0576cd2",
"_model_module": "@jupyter-widgets/controls",
"children": [
"IPY_MODEL_ca2fb37af6ed43d4a74cdc9f2ac5c4a5",
"IPY_MODEL_29419ae5ebb9403ea73f7e5a68037bdd"
"IPY_MODEL_d327cde5a85a4a51bb8b1b3e9cf06c97",
"IPY_MODEL_d5ef1cb2cbed4b87b3c5d292ff2b0da6"
]
}
},
"8f41b90117224eef9133a9c3a103dbba": {
"0a1246a73077468ab80e979cc0576cd2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
......@@ -87,12 +87,12 @@
"left": null
}
},
"ca2fb37af6ed43d4a74cdc9f2ac5c4a5": {
"d327cde5a85a4a51bb8b1b3e9cf06c97": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_view_name": "ProgressView",
"style": "IPY_MODEL_6511b4dfb10b48d1bc98bcfb3987bfa0",
"style": "IPY_MODEL_8d5dff8bca14435a88fa1814533acd85",
"_dom_classes": [],
"description": "100%",
"_model_name": "FloatProgressModel",
......@@ -107,30 +107,30 @@
"min": 0,
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_64f0badf1a8f489885aa984dd62d37dc"
"layout": "IPY_MODEL_3d5136c19e7645ca9bc8f51ceffb2be1"
}
},
"29419ae5ebb9403ea73f7e5a68037bdd": {
"d5ef1cb2cbed4b87b3c5d292ff2b0da6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_view_name": "HTMLView",
"style": "IPY_MODEL_f569911c5cfc4d81bb1bdfa83447afc8",
"style": "IPY_MODEL_2919396dbd4b4c8e821d12bd28665d8a",
"_dom_classes": [],
"description": "",
"_model_name": "HTMLModel",
"placeholder": "​",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": " 781M/781M [00:23<00:00, 34.2MB/s]",
"value": " 781M/781M [00:12<00:00, 65.5MB/s]",
"_view_count": null,
"_view_module_version": "1.5.0",
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_84943ade566440aaa2dcf3b3b27e7074"
"layout": "IPY_MODEL_6feb16f2b2fa4021b1a271e1dd442d04"
}
},
"6511b4dfb10b48d1bc98bcfb3987bfa0": {
"8d5dff8bca14435a88fa1814533acd85": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
......@@ -145,7 +145,7 @@
"_model_module": "@jupyter-widgets/controls"
}
},
"64f0badf1a8f489885aa984dd62d37dc": {
"3d5136c19e7645ca9bc8f51ceffb2be1": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
......@@ -196,7 +196,7 @@
"left": null
}
},
"f569911c5cfc4d81bb1bdfa83447afc8": {
"2919396dbd4b4c8e821d12bd28665d8a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
......@@ -210,7 +210,7 @@
"_model_module": "@jupyter-widgets/controls"
}
},
"84943ade566440aaa2dcf3b3b27e7074": {
"6feb16f2b2fa4021b1a271e1dd442d04": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
......@@ -261,7 +261,7 @@
"left": null
}
},
"8501ed1563e4452eac9df6b7a66e8f8c": {
"e6459e0bcee449b090fc9807672725bc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
......@@ -273,15 +273,15 @@
"_view_count": null,
"_view_module_version": "1.5.0",
"box_style": "",
"layout": "IPY_MODEL_d2bb96801e1f46f4a58e02534f7026ff",
"layout": "IPY_MODEL_c341e1d3bf3b40d1821ce392eb966c68",
"_model_module": "@jupyter-widgets/controls",
"children": [
"IPY_MODEL_468a796ef06b4a24bcba6fbd4a0a8db5",
"IPY_MODEL_42ad5c1ea7be4835bffebf90642178f1"
"IPY_MODEL_660afee173694231a6dce3cd94df6cae",
"IPY_MODEL_261218485cef48df961519dde5edfcbe"
]
}
},
"d2bb96801e1f46f4a58e02534f7026ff": {
"c341e1d3bf3b40d1821ce392eb966c68": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
......@@ -332,12 +332,12 @@
"left": null
}
},
"468a796ef06b4a24bcba6fbd4a0a8db5": {
"660afee173694231a6dce3cd94df6cae": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_view_name": "ProgressView",
"style": "IPY_MODEL_c58b5536d98f4814831934e9c30c4d78",
"style": "IPY_MODEL_32736d503c06497abfae8c0421918255",
"_dom_classes": [],
"description": "100%",
"_model_name": "FloatProgressModel",
......@@ -352,30 +352,30 @@
"min": 0,
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_505597101151486ea29e9ab754544d27"
"layout": "IPY_MODEL_e257738711f54d5280c8393d9d3dce1c"
}
},
"42ad5c1ea7be4835bffebf90642178f1": {
"261218485cef48df961519dde5edfcbe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_view_name": "HTMLView",
"style": "IPY_MODEL_de6e7b4b4a1c408c9f89d89b07a13bcd",
"style": "IPY_MODEL_beb7a6fe34b840899bb79c062681696f",
"_dom_classes": [],
"description": "",
"_model_name": "HTMLModel",
"placeholder": "​",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": " 21.1M/21.1M [00:01<00:00, 18.2MB/s]",
"value": " 21.1M/21.1M [00:00<00:00, 33.5MB/s]",
"_view_count": null,
"_view_module_version": "1.5.0",
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_f5cc9c7d4c274b2d81327ba3163c43fd"
"layout": "IPY_MODEL_e639132395d64d70b99d8b72c32f8fbb"
}
},
"c58b5536d98f4814831934e9c30c4d78": {
"32736d503c06497abfae8c0421918255": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
......@@ -390,7 +390,7 @@
"_model_module": "@jupyter-widgets/controls"
}
},
"505597101151486ea29e9ab754544d27": {
"e257738711f54d5280c8393d9d3dce1c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
......@@ -441,7 +441,7 @@
"left": null
}
},
"de6e7b4b4a1c408c9f89d89b07a13bcd": {
"beb7a6fe34b840899bb79c062681696f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
......@@ -455,7 +455,7 @@
"_model_module": "@jupyter-widgets/controls"
}
},
"f5cc9c7d4c274b2d81327ba3163c43fd": {
"e639132395d64d70b99d8b72c32f8fbb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
......@@ -550,7 +550,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c6ad57c2-40b7-4764-b07d-19ee2ceaabaf"
"outputId": "ae8805a9-ce15-4e1c-f6b4-baa1c1033f56"
},
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
......@@ -563,12 +563,12 @@
"clear_output()\n",
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
],
"execution_count": null,
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"Setup complete. Using torch 1.7.0+cu101 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)\n"
"Setup complete. Using torch 1.7.0+cu101 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16160MB, multi_processor_count=80)\n"
],
"name": "stdout"
}
......@@ -672,30 +672,30 @@
"base_uri": "https://localhost:8080/",
"height": 65,
"referenced_widgets": [
"811fd52fef65422c8267bafcde8a2c3d",
"8f41b90117224eef9133a9c3a103dbba",
"ca2fb37af6ed43d4a74cdc9f2ac5c4a5",
"29419ae5ebb9403ea73f7e5a68037bdd",
"6511b4dfb10b48d1bc98bcfb3987bfa0",
"64f0badf1a8f489885aa984dd62d37dc",
"f569911c5cfc4d81bb1bdfa83447afc8",
"84943ade566440aaa2dcf3b3b27e7074"
"1f8e9b8ebded4175b2eaa9f75c3ceb00",
"0a1246a73077468ab80e979cc0576cd2",
"d327cde5a85a4a51bb8b1b3e9cf06c97",
"d5ef1cb2cbed4b87b3c5d292ff2b0da6",
"8d5dff8bca14435a88fa1814533acd85",
"3d5136c19e7645ca9bc8f51ceffb2be1",
"2919396dbd4b4c8e821d12bd28665d8a",
"6feb16f2b2fa4021b1a271e1dd442d04"
]
},
"outputId": "59a7a546-8492-492e-861d-70a2c85a6794"
"outputId": "d6ace7c6-1be5-41ff-d607-1c716b88d298"
},
"source": [
"# Download COCO val2017\n",
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
],
"execution_count": null,
"execution_count": 2,
"outputs": [
{
"output_type": "display_data",
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "811fd52fef65422c8267bafcde8a2c3d",
"model_id": "1f8e9b8ebded4175b2eaa9f75c3ceb00",
"version_minor": 0,
"version_major": 2
},
......@@ -723,46 +723,45 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "427c211e-e283-4e87-f7b3-7b8dfb11a4a5"
"outputId": "cc25f70c-0a11-44f6-cc44-e92c5083488c"
},
"source": [
"# Run YOLOv5x on COCO val2017\n",
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
],
"execution_count": null,
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
"YOLOv5 v4.0-21-gb26a2f6 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130.5MB)\n",
"YOLOv5 v4.0-75-gbdd88e1 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5x.pt to yolov5x.pt...\n",
"100% 168M/168M [00:05<00:00, 31.9MB/s]\n",
"100% 168M/168M [00:04<00:00, 39.7MB/s]\n",
"\n",
"Fusing layers... \n",
"Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/labels/val2017' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2791.81it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/labels/val2017.cache\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/labels/val2017.cache' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:00<00:00, 13332180.55it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:30<00:00, 1.73it/s]\n",
" all 5e+03 3.63e+04 0.419 0.765 0.68 0.486\n",
"Speed: 5.2/2.0/7.2 ms inference/NMS/total per 640x640 image at batch-size 32\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2824.78it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:33<00:00, 1.68it/s]\n",
" all 5e+03 3.63e+04 0.749 0.619 0.68 0.486\n",
"Speed: 5.2/2.0/7.3 ms inference/NMS/total per 640x640 image at batch-size 32\n",
"\n",
"Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
"loading annotations into memory...\n",
"Done (t=0.41s)\n",
"Done (t=0.44s)\n",
"creating index...\n",
"index created!\n",
"Loading and preparing results...\n",
"DONE (t=5.26s)\n",
"DONE (t=4.47s)\n",
"creating index...\n",
"index created!\n",
"Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n",
"DONE (t=93.97s).\n",
"DONE (t=94.87s).\n",
"Accumulating evaluation results...\n",
"DONE (t=15.06s).\n",
"DONE (t=15.96s).\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.501\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.687\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.544\n",
......@@ -837,30 +836,30 @@
"base_uri": "https://localhost:8080/",
"height": 65,
"referenced_widgets": [
"8501ed1563e4452eac9df6b7a66e8f8c",
"d2bb96801e1f46f4a58e02534f7026ff",
"468a796ef06b4a24bcba6fbd4a0a8db5",
"42ad5c1ea7be4835bffebf90642178f1",
"c58b5536d98f4814831934e9c30c4d78",
"505597101151486ea29e9ab754544d27",
"de6e7b4b4a1c408c9f89d89b07a13bcd",
"f5cc9c7d4c274b2d81327ba3163c43fd"
"e6459e0bcee449b090fc9807672725bc",
"c341e1d3bf3b40d1821ce392eb966c68",
"660afee173694231a6dce3cd94df6cae",
"261218485cef48df961519dde5edfcbe",
"32736d503c06497abfae8c0421918255",
"e257738711f54d5280c8393d9d3dce1c",
"beb7a6fe34b840899bb79c062681696f",
"e639132395d64d70b99d8b72c32f8fbb"
]
},
"outputId": "c68a3db4-1314-46b4-9e52-83532eb65749"
"outputId": "e8b7d5b3-a71e-4446-eec2-ad13419cf700"
},
"source": [
"# Download COCO128\n",
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
],
"execution_count": null,
"execution_count": 4,
"outputs": [
{
"output_type": "display_data",
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8501ed1563e4452eac9df6b7a66e8f8c",
"model_id": "e6459e0bcee449b090fc9807672725bc",
"version_minor": 0,
"version_major": 2
},
......@@ -925,27 +924,27 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "6af7116a-01ab-4b94-e5d7-b37c17dc95de"
"outputId": "38e51b29-2df4-4f00-cde8-5f6e4a34da9e"
},
"source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
],
"execution_count": null,
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 v4.0-21-gb26a2f6 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130.5MB)\n",
"YOLOv5 v4.0-75-gbdd88e1 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
"\n",
"Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=8, world_size=1)\n",
"Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], linear_lr=False, local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=8, world_size=1)\n",
"\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
"Start Tensorboard with \"tensorboard --logdir runs/train\", view at http://localhost:6006/\n",
"2021-01-17 19:56:03.945851: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1\n",
"2021-02-12 06:38:28.027271: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:00<00:00, 15.8MB/s]\n",
"100% 14.1M/14.1M [00:01<00:00, 13.2MB/s]\n",
"\n",
"\n",
" from n params module arguments \n",
......@@ -979,12 +978,11 @@
"Transferred 362/362 items from yolov5s.pt\n",
"Scaled weight_decay = 0.0005\n",
"Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2647.74it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2566.00it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../coco128/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 1503840.09it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 176.03it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 24200.82it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:01<00:00, 123.25it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 175.07it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 764773.38it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 128.17it/s]\n",
"Plotting labels... \n",
"\n",
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
......@@ -994,19 +992,19 @@
"Starting training for 3 epochs...\n",
"\n",
" Epoch gpu_mem box obj cls total targets img_size\n",
" 0/2 3.27G 0.04357 0.06779 0.01869 0.1301 207 640: 100% 8/8 [00:04<00:00, 1.95it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 8/8 [00:05<00:00, 1.36it/s]\n",
" all 128 929 0.392 0.732 0.657 0.428\n",
" 0/2 3.27G 0.04357 0.06781 0.01869 0.1301 207 640: 100% 8/8 [00:03<00:00, 2.03it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:04<00:00, 1.14s/it]\n",
" all 128 929 0.646 0.627 0.659 0.431\n",
"\n",
" Epoch gpu_mem box obj cls total targets img_size\n",
" 1/2 7.47G 0.04308 0.06636 0.02083 0.1303 227 640: 100% 8/8 [00:02<00:00, 3.88it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 8/8 [00:01<00:00, 5.07it/s]\n",
" all 128 929 0.387 0.737 0.657 0.432\n",
" 1/2 7.75G 0.04308 0.06654 0.02083 0.1304 227 640: 100% 8/8 [00:01<00:00, 4.11it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:01<00:00, 2.94it/s]\n",
" all 128 929 0.681 0.607 0.663 0.434\n",
"\n",
" Epoch gpu_mem box obj cls total targets img_size\n",
" 2/2 7.48G 0.04461 0.06864 0.01866 0.1319 191 640: 100% 8/8 [00:02<00:00, 3.57it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 8/8 [00:02<00:00, 2.82it/s]\n",
" all 128 929 0.385 0.742 0.658 0.431\n",
" 2/2 7.75G 0.04461 0.06896 0.01866 0.1322 191 640: 100% 8/8 [00:02<00:00, 3.94it/s]\n",
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.22it/s]\n",
" all 128 929 0.642 0.632 0.662 0.432\n",
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
"3 epochs completed in 0.007 hours.\n",
"\n"
......@@ -1238,4 +1236,4 @@
"outputs": []
}
]
}
}
\ No newline at end of file
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论