Unverified 提交 bdd88e1e authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

YOLOv5 Segmentation Dataloader Updates (#2188)

* Update C3 module * Update C3 module * Update C3 module * Update C3 module * update * update * update * update * update * update * update * update * update * updates * updates * updates * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * updates * updates * updates * updates * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update datasets * update * update * update * update attempt_downlaod() * merge * merge * update * update * update * update * update * update * update * update * update * update * parameterize eps * comments * gs-multiple * update * max_nms implemented * Create one_cycle() function * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * GitHub API rate limit fix * update * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * astuple * epochs * update * update * ComputeLoss() * update * update * update * update * update * update * update * update * update * update * update * merge * merge * merge * merge * update * update * update * update * commit=tag == tags[-1] * Update cudnn.benchmark * update * update * update * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * update * mosaic9 * update * update * update * update * update * update * institute cache versioning * only display on existing cache * reverse cache exists booleans
上级 404749a3
......@@ -10,7 +10,7 @@
# Download/unzip labels
d='../' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco2017labels.zip' # 68 MB
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
......
差异被折叠。
......@@ -225,7 +225,7 @@ def xywh2xyxy(x):
return y
def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
......@@ -235,6 +235,40 @@ def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
return y
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
# Convert normalized segments into pixel segments, shape (n,2)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * x[:, 0] + padw # top left x
y[:, 1] = h * x[:, 1] + padh # top left y
return y
def segment2box(segment, width=640, height=640):
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
x, y, = x[inside], y[inside]
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # cls, xyxy
def segments2boxes(segments):
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
boxes = []
for s in segments:
x, y = s.T # segment xy
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
return xyxy2xywh(np.array(boxes)) # cls, xywh
def resample_segments(segments, n=1000):
# Up-sample an (n,2) segment
for i, s in enumerate(segments):
x = np.linspace(0, len(s) - 1, n)
xp = np.arange(len(s))
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
return segments
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
......
......@@ -105,7 +105,7 @@ class ComputeLoss:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
self.balance = {3: [3.67, 1.0, 0.43], 4: [4.0, 1.0, 0.25, 0.06], 5: [4.0, 1.0, 0.25, 0.06, .02]}[det.nl]
self.balance = {3: [4.0, 1.0, 0.4], 4: [4.0, 1.0, 0.25, 0.06], 5: [4.0, 1.0, 0.25, 0.06, .02]}[det.nl]
self.ssi = (det.stride == 16).nonzero(as_tuple=False).item() # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
for k in 'na', 'nc', 'nl', 'anchors':
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论