Unverified 提交 24bea5e4 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

Standardize headers and docstrings (#4417)

* Implement new headers * Reformat 1 * Reformat 2 * Reformat 3 - math * Reformat 4 - yaml
上级 bb0aed1b
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
name: CI CPU testing name: CI CPU testing
on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows
push: push:
branches: [ master, develop ] branches: [master, develop]
pull_request: pull_request:
# The branches below must be a subset of the branches above # The branches below must be a subset of the branches above
branches: [ master, develop ] branches: [master, develop]
jobs: jobs:
cpu-tests: cpu-tests:
...@@ -14,9 +16,9 @@ jobs: ...@@ -14,9 +16,9 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
os: [ ubuntu-latest, macos-latest, windows-latest ] os: [ubuntu-latest, macos-latest, windows-latest]
python-version: [ 3.8 ] python-version: [3.8]
model: [ 'yolov5s' ] # models to test model: ['yolov5s'] # models to test
# Timeout: https://stackoverflow.com/a/59076067/4521646 # Timeout: https://stackoverflow.com/a/59076067/4521646
timeout-minutes: 50 timeout-minutes: 50
......
...@@ -15,7 +15,7 @@ jobs: ...@@ -15,7 +15,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
language: [ 'python' ] language: ['python']
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ] # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
# Learn more: # Learn more:
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
name: Greetings name: Greetings
on: [ pull_request_target, issues ] on: [pull_request_target, issues]
jobs: jobs:
greeting: greeting:
......
...@@ -3,7 +3,7 @@ name: Automatic Rebase ...@@ -3,7 +3,7 @@ name: Automatic Rebase
on: on:
issue_comment: issue_comment:
types: [ created ] types: [created]
jobs: jobs:
rebase: rebase:
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
name: Close stale issues name: Close stale issues
on: on:
schedule: schedule:
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:21.05-py3 FROM nvcr.io/nvidia/pytorch:21.05-py3
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Example usage: python train.py --data Argoverse.yaml # Example usage: python train.py --data Argoverse.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Global Wheat 2020 dataset http://www.global-wheat.com/ # Global Wheat 2020 dataset http://www.global-wheat.com/
# Example usage: python train.py --data GlobalWheat2020.yaml # Example usage: python train.py --data GlobalWheat2020.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Objects365 dataset https://www.objects365.org/ # Objects365 dataset https://www.objects365.org/
# Example usage: python train.py --data Objects365.yaml # Example usage: python train.py --data Objects365.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
# Example usage: python train.py --data SKU-110K.yaml # Example usage: python train.py --data SKU-110K.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC
# Example usage: python train.py --data VOC.yaml # Example usage: python train.py --data VOC.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
# Example usage: python train.py --data VisDrone.yaml # Example usage: python train.py --data VisDrone.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO 2017 dataset http://cocodataset.org # COCO 2017 dataset http://cocodataset.org
# Example usage: python train.py --data coco.yaml # Example usage: python train.py --data coco.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: python train.py --data coco128.yaml # Example usage: python train.py --data coco128.yaml
# parent # parent
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for VOC finetuning # Hyperparameters for VOC finetuning
# python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50 # python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
# Hyperparameter Evolution Results # Hyperparameter Evolution Results
# Generations: 306 # Generations: 306
# P R mAP.5 mAP.5:.95 box obj cls # P R mAP.5 mAP.5:.95 box obj cls
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
lr0: 0.00258 lr0: 0.00258
lrf: 0.17 lrf: 0.17
momentum: 0.779 momentum: 0.779
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for COCO training from scratch # Hyperparameters for COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300 # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf) lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1 momentum: 0.937 # SGD momentum/Adam beta1
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for COCO training from scratch # Hyperparameters for COCO training from scratch
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300 # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf) lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1 momentum: 0.937 # SGD momentum/Adam beta1
......
#!/bin/bash #!/bin/bash
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Download latest models from https://github.com/ultralytics/yolov5/releases # Download latest models from https://github.com/ultralytics/yolov5/releases
# Example usage: bash path/to/download_weights.sh # Example usage: bash path/to/download_weights.sh
# parent # parent
......
#!/bin/bash #!/bin/bash
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Download COCO 2017 dataset http://cocodataset.org # Download COCO 2017 dataset http://cocodataset.org
# Example usage: bash data/scripts/get_coco.sh # Example usage: bash data/scripts/get_coco.sh
# parent # parent
......
#!/bin/bash #!/bin/bash
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) # Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: bash data/scripts/get_coco128.sh # Example usage: bash data/scripts/get_coco128.sh
# parent # parent
......
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# xView 2018 dataset https://challenge.xviewdataset.org # xView 2018 dataset https://challenge.xviewdataset.org
# -------- DOWNLOAD DATA MANUALLY from URL above and unzip to 'datasets/xView' before running train command! -------- # -------- DOWNLOAD DATA MANUALLY from URL above and unzip to 'datasets/xView' before running train command! --------
# Example usage: python train.py --data xView.yaml # Example usage: python train.py --data xView.yaml
......
"""Run inference with a YOLOv5 model on images, videos, directories, streams # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.
Usage: Usage:
$ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640 $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
......
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Export a PyTorch model to TorchScript, ONNX, CoreML formats
Usage: Usage:
$ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1 $ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
......
"""YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
Usage: Usage:
import torch import torch
......
# YOLOv5 common modules # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Common modules
"""
import logging import logging
import math
import warnings import warnings
from copy import copy from copy import copy
from pathlib import Path from pathlib import Path
import math
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import requests import requests
......
# YOLOv5 experimental modules # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Experimental modules
"""
import numpy as np import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
from models.common import Conv, DWConv from models.common import Conv
from utils.downloads import attempt_download from utils.downloads import attempt_download
......
# Default YOLOv5 anchors for COCO data # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Default anchors for COCO data
# P5 ------------------------------------------------------------------------------------------------------------------- # P5 -------------------------------------------------------------------------------------------------------------------
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple depth_multiple: 0.67 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple depth_multiple: 0.33 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple depth_multiple: 0.33 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple depth_multiple: 0.33 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple depth_multiple: 1.33 # model depth multiple
......
"""YOLOv5-specific modules # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
YOLO-specific modules
Usage: Usage:
$ python path/to/models/yolo.py --cfg yolov5s.yaml $ python path/to/models/yolo.py --cfg yolov5s.yaml
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple depth_multiple: 1.0 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple depth_multiple: 0.67 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple depth_multiple: 0.33 # model depth multiple
......
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple depth_multiple: 1.33 # model depth multiple
......
"""Train a YOLOv5 model on a custom dataset # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Train a YOLOv5 model on a custom dataset
Usage: Usage:
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
...@@ -6,6 +8,7 @@ Usage: ...@@ -6,6 +8,7 @@ Usage:
import argparse import argparse
import logging import logging
import math
import os import os
import random import random
import sys import sys
...@@ -13,7 +16,6 @@ import time ...@@ -13,7 +16,6 @@ import time
from copy import deepcopy from copy import deepcopy
from pathlib import Path from pathlib import Path
import math
import numpy as np import numpy as np
import torch import torch
import torch.distributed as dist import torch.distributed as dist
......
# Activation functions # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Activation functions
"""
import torch import torch
import torch.nn as nn import torch.nn as nn
......
# YOLOv5 image augmentation functions # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Image augmentation functions
"""
import logging import logging
import math
import random import random
import cv2 import cv2
import math
import numpy as np import numpy as np
from utils.general import colorstr, segment2box, resample_segments, check_version from utils.general import colorstr, segment2box, resample_segments, check_version
......
# Auto-anchor utils # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Auto-anchor utils
"""
import random import random
......
#!/usr/bin/env python # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Callback utils
"""
class Callbacks: class Callbacks:
"""" """"
......
# YOLOv5 dataset utils and dataloaders # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Dataloaders and dataset utils
"""
import glob import glob
import hashlib import hashlib
......
# Download utils # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Download utils
"""
import os import os
import platform import platform
......
# Flask REST API # Flask REST API
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API
created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
## Requirements ## Requirements
[Flask](https://palletsprojects.com/p/flask/) is required. Install with: [Flask](https://palletsprojects.com/p/flask/) is required. Install with:
```shell ```shell
$ pip install Flask $ pip install Flask
``` ```
...@@ -65,4 +69,5 @@ The model inference results are returned as a JSON response: ...@@ -65,4 +69,5 @@ The model inference results are returned as a JSON response:
] ]
``` ```
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py` An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
in `example_request.py`
# YOLOv5 general utils # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
General utils
"""
import contextlib import contextlib
import glob import glob
import logging import logging
import math
import os import os
import platform import platform
import random import random
...@@ -16,7 +20,6 @@ from pathlib import Path ...@@ -16,7 +20,6 @@ from pathlib import Path
from subprocess import check_output from subprocess import check_output
import cv2 import cv2
import math
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pkg_resources as pkg import pkg_resources as pkg
......
# YOLOv5 experiment logging utils # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Logging utils
"""
import warnings import warnings
from threading import Thread from threading import Thread
......
...@@ -507,4 +507,4 @@ def all_logging_disabled(highest_level=logging.CRITICAL): ...@@ -507,4 +507,4 @@ def all_logging_disabled(highest_level=logging.CRITICAL):
try: try:
yield yield
finally: finally:
logging.disable(previous_level) logging.disable(previous_level)
\ No newline at end of file
# Loss functions # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Loss functions
"""
import torch import torch
import torch.nn as nn import torch.nn as nn
......
# Model validation metrics # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Model validation metrics
"""
import math
import warnings import warnings
from pathlib import Path from pathlib import Path
import math
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
import torch import torch
......
# Plotting utils # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Plotting utils
"""
import math import math
from copy import copy from copy import copy
......
# YOLOv5 PyTorch utils # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
PyTorch utils
"""
import datetime import datetime
import logging import logging
import math
import os import os
import platform import platform
import subprocess import subprocess
...@@ -10,7 +14,6 @@ from contextlib import contextmanager ...@@ -10,7 +14,6 @@ from contextlib import contextmanager
from copy import deepcopy from copy import deepcopy
from pathlib import Path from pathlib import Path
import math
import torch import torch
import torch.backends.cudnn as cudnn import torch.backends.cudnn as cudnn
import torch.distributed as dist import torch.distributed as dist
......
"""Validate a trained YOLOv5 model accuracy on a custom dataset # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset
Usage: Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论