Unverified 提交 378bde4b authored 作者: Victor Sonck's avatar Victor Sonck 提交者: GitHub

ClearML experiment tracking integration (#8620)

* Add titles to matplotlib plots * Add ClearML Experiment Tracking integration. * Add ClearML Data Version Management automatic download when requested * Add ClearML Hyperparameter Optimization * ClearML save period integration * Fix wandb breaking when used with ClearML dataset * Fix wandb breaking when used with ClearML resume and dataset * Add ClearML documentation * fixed small bug in clearml integration that misreports epoch number * Final ClearMl additions before refactor * Add correct epoch reporting * Add remote execution and autoscaling docs for ClearML integration * Added images to clearml integration docs * fixed logo alignment bug and added hpo screenshot clearml * Fixed small epoch number bug in clearml integration * Remove saved model flush clearml * Cleanup clearml readme section * Cleaned up clearml logger docstring * Remove resume readme section clearml * Clearml integration cleanup * Updated ClearML documentation * Added dark vs light icons ClearML Readme * Clearml Readme styling * Add better gifs * Fixed gif file size * Add better images in tutorial notebook * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Addressed comments in PR #8620 * Fixed circular import * Fixed circular import * Update tutorial.ipynb * Update tutorial.ipynb * Inline comment * Restructured tutorial notebook * Add correct ClearML link to README * Update tutorial.ipynb * Update general.py * Update __init__.py * Update __init__.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update __init__.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update __init__.py * Update README.md * Update __init__.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * spelling * Update tutorial.ipynb * notebook cutt.ly links * Update README.md * Update README.md * cutt.ly links in tutorial * Removed labels as they show up on last subplot only Co-authored-by: 's avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
上级 2794483e
......@@ -151,7 +151,8 @@ python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 12
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
RECOMMENDED
- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)  🌟 NEW
- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)  ⭐ NEW
......@@ -190,17 +191,23 @@ Get started in seconds with our verified environments. Click each icon below for
## <div align="center">Integrations</div>
<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
<a href="https://cutt.ly/yolov5-readme-clearml#gh-light-mode-only">
<img src="https://github.com/thepycoder/clearml_screenshots/raw/main/banner_github.png#gh-light-mode-only" width="32%" />
</a>
<a href="https://cutt.ly/yolov5-readme-clearml#gh-dark-mode-only">
<img src="https://github.com/thepycoder/clearml_screenshots/raw/main/banner_github_light.png#gh-dark-mode-only" width="32%" />
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="33%"/>
</a>
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="33%"/>
</a>
</div>
|Weights and Biases|Roboflow ⭐ NEW|
|:-:|:-:|
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
|ClearML ⭐ NEW|Roboflow|Weights and Biases
|:-:|:-:|:-:|
|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)
<!-- ## <div align="center">Compete and Win</div>
......
......@@ -17,6 +17,7 @@ protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
# Logging -------------------------------------
tensorboard>=2.4.1
# wandb
# clearml
# Plotting ------------------------------------
pandas>=1.1.4
......
......@@ -90,6 +90,8 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
data_dict = None
if RANK in {-1, 0}:
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
if loggers.clearml:
data_dict = loggers.clearml.data_dict # None if no ClearML dataset or filled in by ClearML
if loggers.wandb:
data_dict = loggers.wandb.data_dict
if resume:
......
......@@ -7,6 +7,7 @@
"provenance": [],
"collapsed_sections": [],
"machine_shape": "hm",
"toc_visible": true,
"include_colab_link": true
},
"kernelspec": {
......@@ -913,6 +914,30 @@
"# 4. Visualize"
]
},
{
"cell_type": "markdown",
"source": [
"## ClearML Logging and Automation 🌟 NEW\n",
"\n",
"[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs.\n",
"\n",
"To enable ClearML (Check cells above):\n",
"- `pip install clearml`\n",
"- run `clearml-init` to connect to a ClearML server (**deploy your own open-source server [here](https://github.com/allegroai/clearml-server)**, or use our free hosted server [here](https://cutt.ly/yolov5-notebook-clearml))\n",
"\n",
"You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
"\n",
"You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. \n",
"\n",
"Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for more info!\n",
"\n",
"<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
"<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
],
"metadata": {
"id": "Lay2WsTjNJzP"
}
},
{
"cell_type": "markdown",
"metadata": {
......@@ -1105,4 +1130,4 @@
"outputs": []
}
]
}
\ No newline at end of file
}
......@@ -14,6 +14,7 @@ import random
import re
import shutil
import signal
import sys
import threading
import time
import urllib
......@@ -449,6 +450,9 @@ def check_file(file, suffix=''):
torch.hub.download_url_to_file(url, file)
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
return file
elif file.startswith('clearml://'): # ClearML Dataset ID
assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
return file
else: # search
files = []
for d in 'data', 'models', 'utils': # search directories
......
......@@ -11,11 +11,12 @@ import torch
from torch.utils.tensorboard import SummaryWriter
from utils.general import colorstr, cv2, emojis
from utils.loggers.clearml.clearml_utils import ClearmlLogger
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_results
from utils.torch_utils import de_parallel
LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
LOGGERS = ('csv', 'tb', 'wandb', 'clearml') # *.csv, TensorBoard, Weights & Biases, ClearML
RANK = int(os.getenv('RANK', -1))
try:
......@@ -32,6 +33,13 @@ try:
except (ImportError, AssertionError):
wandb = None
try:
import clearml
assert hasattr(clearml, '__version__') # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
class Loggers():
# YOLOv5 Loggers class
......@@ -61,10 +69,14 @@ class Loggers():
setattr(self, k, None) # init empty logger dictionary
self.csv = True # always log to csv
# Message
# Messages
if not wandb:
prefix = colorstr('Weights & Biases: ')
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)"
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
self.logger.info(emojis(s))
if not clearml:
prefix = colorstr('ClearML: ')
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 runs in ClearML"
self.logger.info(emojis(s))
# TensorBoard
......@@ -82,12 +94,17 @@ class Loggers():
self.wandb = WandbLogger(self.opt, run_id)
# temp warn. because nested artifacts not supported after 0.12.10
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
self.logger.warning(
"YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
)
s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
self.logger.warning(s)
else:
self.wandb = None
# ClearML
if clearml and 'clearml' in self.include:
self.clearml = ClearmlLogger(self.opt, self.hyp)
else:
self.clearml = None
def on_train_start(self):
# Callback runs on train start
pass
......@@ -97,9 +114,12 @@ class Loggers():
paths = self.save_dir.glob('*labels*.jpg') # training labels
if self.wandb:
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
if self.clearml:
pass # ClearML saves these images automatically using hooks
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots):
# Callback runs on train batch end
# ni: number integrated batches (since train start)
if plots:
if ni == 0:
if self.tb and not self.opt.sync_bn: # --sync known issue https://github.com/ultralytics/yolov5/issues/3754
......@@ -109,9 +129,12 @@ class Loggers():
if ni < 3:
f = self.save_dir / f'train_batch{ni}.jpg' # filename
plot_images(imgs, targets, paths, f)
if self.wandb and ni == 10:
if (self.wandb or self.clearml) and ni == 10:
files = sorted(self.save_dir.glob('train*.jpg'))
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
if self.wandb:
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
if self.clearml:
self.clearml.log_debug_samples(files, title='Mosaics')
def on_train_epoch_end(self, epoch):
# Callback runs on train epoch end
......@@ -122,12 +145,17 @@ class Loggers():
# Callback runs on val image end
if self.wandb:
self.wandb.val_one_image(pred, predn, path, names, im)
if self.clearml:
self.clearml.log_image_with_boxes(path, pred, names, im)
def on_val_end(self):
# Callback runs on val end
if self.wandb:
if self.wandb or self.clearml:
files = sorted(self.save_dir.glob('val*.jpg'))
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
if self.wandb:
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
if self.clearml:
self.clearml.log_debug_samples(files, title='Validation')
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
# Callback runs at the end of each fit (train+val) epoch
......@@ -142,6 +170,10 @@ class Loggers():
if self.tb:
for k, v in x.items():
self.tb.add_scalar(k, v, epoch)
elif self.clearml: # log to ClearML if TensorBoard not used
for k, v in x.items():
title, series = k.split('/')
self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
if self.wandb:
if best_fitness == fi:
......@@ -151,12 +183,22 @@ class Loggers():
self.wandb.log(x)
self.wandb.end_epoch(best_result=best_fitness == fi)
if self.clearml:
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
self.clearml.current_epoch += 1
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
# Callback runs on model save event
if self.wandb:
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
if self.clearml:
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.clearml.task.update_output_model(model_path=str(last),
model_name='Latest Model',
auto_delete_file=False)
def on_train_end(self, last, best, plots, epoch, results):
# Callback runs on training end
if plots:
......@@ -165,7 +207,7 @@ class Loggers():
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
if self.tb:
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
for f in files:
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
......@@ -180,6 +222,12 @@ class Loggers():
aliases=['latest', 'best', 'stripped'])
self.wandb.finish_run()
if self.clearml:
# Save the best model here
if not self.opt.evolve:
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
name='Best Model')
def on_params_update(self, params):
# Update hyperparams or configs of the experiment
# params: A dict containing {param: value} pairs
......
差异被折叠。
"""Main Logger class for ClearML experiment tracking."""
import glob
import re
from pathlib import Path
import yaml
from torchvision.transforms import ToPILImage
from torchvision.utils import draw_bounding_boxes
try:
import clearml
from clearml import Dataset, Task
assert hasattr(clearml, '__version__') # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
def construct_dataset(clearml_info_string):
dataset_id = clearml_info_string.replace('clearml://', '')
dataset = Dataset.get(dataset_id=dataset_id)
dataset_root_path = Path(dataset.get_local_copy())
# We'll search for the yaml file definition in the dataset
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
if len(yaml_filenames) > 1:
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
'the dataset definition this way.')
elif len(yaml_filenames) == 0:
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
'inside the dataset root path.')
with open(yaml_filenames[0]) as f:
dataset_definition = yaml.safe_load(f)
assert set(dataset_definition.keys()).issuperset(
{'train', 'test', 'val', 'nc', 'names'}
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
data_dict = dict()
data_dict['train'] = str(
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
data_dict['test'] = str(
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
data_dict['val'] = str(
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
data_dict['nc'] = dataset_definition['nc']
data_dict['names'] = dataset_definition['names']
return data_dict
class ClearmlLogger:
"""Log training runs, datasets, models, and predictions to ClearML.
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
this information includes hyperparameters, system configuration and metrics, model metrics, code information and
basic data metrics and analyses.
By providing additional command line arguments to train.py, datasets,
models and predictions can also be logged.
"""
def __init__(self, opt, hyp):
"""
- Initialize ClearML Task, this object will capture the experiment
- Upload dataset version to ClearML Data if opt.upload_dataset is True
arguments:
opt (namespace) -- Commandline arguments for this run
hyp (dict) -- Hyperparameters for this run
"""
self.current_epoch = 0
# Keep tracked of amount of logged images to enforce a limit
self.current_epoch_logged_images = set()
# Maximum number of images to log to clearML per epoch
self.max_imgs_to_log_per_epoch = 16
# Get the interval of epochs when bounding box images should be logged
self.bbox_interval = opt.bbox_interval
self.clearml = clearml
self.task = None
self.data_dict = None
if self.clearml:
self.task = Task.init(
project_name='YOLOv5',
task_name='training',
tags=['YOLOv5'],
output_uri=True,
auto_connect_frameworks={'pytorch': False}
# We disconnect pytorch auto-detection, because we added manual model save points in the code
)
# ClearML's hooks will already grab all general parameters
# Only the hyperparameters coming from the yaml config file
# will have to be added manually!
self.task.connect(hyp, name='Hyperparameters')
# Get ClearML Dataset Version if requested
if opt.data.startswith('clearml://'):
# data_dict should have the following keys:
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
self.data_dict = construct_dataset(opt.data)
# Set data to data_dict because wandb will crash without this information and opt is the best way
# to give it to them
opt.data = self.data_dict
def log_debug_samples(self, files, title='Debug Samples'):
"""
Log files (images) as debug samples in the ClearML task.
arguments:
files (List(PosixPath)) a list of file paths in PosixPath format
title (str) A title that groups together images with the same values
"""
for f in files:
if f.exists():
it = re.search(r'_batch(\d+)', f.name)
iteration = int(it.groups()[0]) if it else 0
self.task.get_logger().report_image(title=title,
series=f.name.replace(it.group(), ''),
local_path=str(f),
iteration=iteration)
def log_image_with_boxes(self, image_path, boxes, class_names, image):
"""
Draw the bounding boxes on a single image and report the result as a ClearML debug sample
arguments:
image_path (PosixPath) the path the original image file
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
class_names (dict): dict containing mapping of class int to class name
image (Tensor): A torch tensor containing the actual image data
"""
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
# Log every bbox_interval times and deduplicate for any intermittend extra eval runs
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
converter = ToPILImage()
labels = []
for conf, class_nr in zip(boxes[:, 4], boxes[:, 5]):
class_name = class_names[int(class_nr)]
confidence = round(float(conf) * 100, 2)
labels.append(f"{class_name}: {confidence}%")
annotated_image = converter(
draw_bounding_boxes(image=image.mul(255).clamp(0, 255).byte().cpu(),
boxes=boxes[:, :4],
labels=labels))
self.task.get_logger().report_image(title='Bounding Boxes',
series=image_path.name,
iteration=self.current_epoch,
image=annotated_image)
self.current_epoch_logged_images.add(image_path)
from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
from clearml.automation.optuna import OptimizerOptuna
task = Task.init(project_name='Hyper-Parameter Optimization',
task_name='YOLOv5',
task_type=Task.TaskTypes.optimizer,
reuse_last_task_id=False)
# Example use case:
optimizer = HyperParameterOptimizer(
# This is the experiment we want to optimize
base_task_id='<your_template_task_id>',
# here we define the hyper-parameters to optimize
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
# For Example, here we see in the base experiment a section Named: "General"
# under it a parameter named "batch_size", this becomes "General/batch_size"
# If you have `argparse` for example, then arguments will appear under the "Args" section,
# and you should instead pass "Args/batch_size"
hyper_parameters=[
UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
# this is the objective metric we want to maximize/minimize
objective_metric_title='metrics',
objective_metric_series='mAP_0.5',
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
objective_metric_sign='max',
# let us limit the number of concurrent experiments,
# this in turn will make sure we do dont bombard the scheduler with experiments.
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
max_number_of_concurrent_tasks=1,
# this is the optimizer class (actually doing the optimization)
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
optimizer_class=OptimizerOptuna,
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
save_top_k_tasks_only=5, # 5,
compute_time_limit=None,
total_max_jobs=20,
min_iteration_per_job=None,
max_iteration_per_job=None,
)
# report every 10 seconds, this is way too often, but we are testing here
optimizer.set_report_period(10)
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
# set the time limit for the optimization process (2 hours)
optimizer.set_time_limit(in_minutes=120.0)
# Start the optimization process in the local environment
optimizer.start_locally()
# wait until process is done (notice we are controlling the optimization process in the background)
optimizer.wait()
# make sure background optimization stopped
optimizer.stop()
print('We are done, good bye')
......@@ -43,6 +43,9 @@ def check_wandb_config_file(data_config_file):
def check_wandb_dataset(data_file):
is_trainset_wandb_artifact = False
is_valset_wandb_artifact = False
if isinstance(data_file, dict):
# In that case another dataset manager has already processed it and we don't have to
return data_file
if check_file(data_file) and data_file.endswith('.yaml'):
with open(data_file, errors='ignore') as f:
data_dict = yaml.safe_load(f)
......@@ -121,7 +124,7 @@ class WandbLogger():
"""
- Initialize WandbLogger instance
- Upload dataset if opt.upload_dataset is True
- Setup trainig processes if job_type is 'Training'
- Setup training processes if job_type is 'Training'
arguments:
opt (namespace) -- Commandline arguments for this run
......@@ -170,7 +173,11 @@ class WandbLogger():
if not opt.resume:
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
if opt.resume:
if isinstance(opt.data, dict):
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
# and they will have stored the already processed dict in opt.data
self.data_dict = opt.data
elif opt.resume:
# resume from artifact
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
self.data_dict = dict(self.wandb_run.config.data_dict)
......
......@@ -209,6 +209,7 @@ class ConfusionMatrix:
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
fig.axes[0].set_xlabel('True')
fig.axes[0].set_ylabel('Predicted')
plt.title('Confusion Matrix')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
plt.close()
except Exception as e:
......@@ -336,6 +337,7 @@ def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
plt.title('Precision-Recall Curve')
fig.savefig(save_dir, dpi=250)
plt.close()
......@@ -357,5 +359,6 @@ def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confi
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
plt.title(f'{ylabel}-Confidence Curve')
fig.savefig(save_dir, dpi=250)
plt.close()
......@@ -148,6 +148,7 @@ def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detec
ax[i].axis('off')
LOGGER.info(f'Saving {f}... ({n}/{channels})')
plt.title('Features')
plt.savefig(f, dpi=300, bbox_inches='tight')
plt.close()
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论