Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
442a7abd
Unverified
提交
442a7abd
authored
7月 20, 2021
作者:
Glenn Jocher
提交者:
GitHub
7月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor `export.py` (#4080)
* Refactor `export.py` * cleanup * Update check_requirements() * Update export.py
上级
0cc7c587
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
80 行增加
和
68 行删除
+80
-68
export.py
export.py
+80
-68
没有找到文件。
export.py
浏览文件 @
442a7abd
...
@@ -24,6 +24,78 @@ from utils.general import colorstr, check_img_size, check_requirements, file_siz
...
@@ -24,6 +24,78 @@ from utils.general import colorstr, check_img_size, check_requirements, file_siz
from
utils.torch_utils
import
select_device
from
utils.torch_utils
import
select_device
def
export_torchscript
(
model
,
img
,
file
,
optimize
):
# TorchScript model export
prefix
=
colorstr
(
'TorchScript:'
)
try
:
print
(
f
'
\n
{prefix} starting export with torch {torch.__version__}...'
)
f
=
file
.
with_suffix
(
'.torchscript.pt'
)
ts
=
torch
.
jit
.
trace
(
model
,
img
,
strict
=
False
)
(
optimize_for_mobile
(
ts
)
if
optimize
else
ts
)
.
save
(
f
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
return
ts
except
Exception
as
e
:
print
(
f
'{prefix} export failure: {e}'
)
def
export_onnx
(
model
,
img
,
file
,
opset_version
,
train
,
dynamic
,
simplify
):
# ONNX model export
prefix
=
colorstr
(
'ONNX:'
)
try
:
check_requirements
((
'onnx'
,
'onnx-simplifier'
))
import
onnx
print
(
f
'{prefix} starting export with onnx {onnx.__version__}...'
)
f
=
file
.
with_suffix
(
'.onnx'
)
torch
.
onnx
.
export
(
model
,
img
,
f
,
verbose
=
False
,
opset_version
=
opset_version
,
training
=
torch
.
onnx
.
TrainingMode
.
TRAINING
if
train
else
torch
.
onnx
.
TrainingMode
.
EVAL
,
do_constant_folding
=
not
train
,
input_names
=
[
'images'
],
output_names
=
[
'output'
],
dynamic_axes
=
{
'images'
:
{
0
:
'batch'
,
2
:
'height'
,
3
:
'width'
},
# shape(1,3,640,640)
'output'
:
{
0
:
'batch'
,
1
:
'anchors'
}
# shape(1,25200,85)
}
if
dynamic
else
None
)
# Checks
model_onnx
=
onnx
.
load
(
f
)
# load onnx model
onnx
.
checker
.
check_model
(
model_onnx
)
# check onnx model
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
# Simplify
if
simplify
:
try
:
import
onnxsim
print
(
f
'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...'
)
model_onnx
,
check
=
onnxsim
.
simplify
(
model_onnx
,
dynamic_input_shape
=
dynamic
,
input_shapes
=
{
'images'
:
list
(
img
.
shape
)}
if
dynamic
else
None
)
assert
check
,
'assert check failed'
onnx
.
save
(
model_onnx
,
f
)
except
Exception
as
e
:
print
(
f
'{prefix} simplifier failure: {e}'
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
except
Exception
as
e
:
print
(
f
'{prefix} export failure: {e}'
)
def
export_coreml
(
ts_model
,
img
,
file
,
train
):
# CoreML model export
prefix
=
colorstr
(
'CoreML:'
)
try
:
import
coremltools
as
ct
print
(
f
'{prefix} starting export with coremltools {ct.__version__}...'
)
f
=
file
.
with_suffix
(
'.mlmodel'
)
assert
train
,
'CoreML exports should be placed in model.train() mode with `python export.py --train`'
model
=
ct
.
convert
(
ts_model
,
inputs
=
[
ct
.
ImageType
(
'image'
,
shape
=
img
.
shape
,
scale
=
1
/
255.0
,
bias
=
[
0
,
0
,
0
])])
model
.
save
(
f
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
except
Exception
as
e
:
print
(
f
'{prefix} export failure: {e}'
)
def
run
(
weights
=
'./yolov5s.pt'
,
# weights path
def
run
(
weights
=
'./yolov5s.pt'
,
# weights path
img_size
=
(
640
,
640
),
# image (height, width)
img_size
=
(
640
,
640
),
# image (height, width)
batch_size
=
1
,
# batch size
batch_size
=
1
,
# batch size
...
@@ -40,12 +112,13 @@ def run(weights='./yolov5s.pt', # weights path
...
@@ -40,12 +112,13 @@ def run(weights='./yolov5s.pt', # weights path
t
=
time
.
time
()
t
=
time
.
time
()
include
=
[
x
.
lower
()
for
x
in
include
]
include
=
[
x
.
lower
()
for
x
in
include
]
img_size
*=
2
if
len
(
img_size
)
==
1
else
1
# expand
img_size
*=
2
if
len
(
img_size
)
==
1
else
1
# expand
file
=
Path
(
weights
)
# Load PyTorch model
# Load PyTorch model
device
=
select_device
(
device
)
device
=
select_device
(
device
)
assert
not
(
device
.
type
==
'cpu'
and
half
),
'--half only compatible with GPU export, i.e. use --device 0'
assert
not
(
device
.
type
==
'cpu'
and
half
),
'--half only compatible with GPU export, i.e. use --device 0'
model
=
attempt_load
(
weights
,
map_location
=
device
)
# load FP32 model
model
=
attempt_load
(
weights
,
map_location
=
device
)
# load FP32 model
label
s
=
model
.
names
name
s
=
model
.
names
# Input
# Input
gs
=
int
(
max
(
model
.
stride
))
# grid size (max stride)
gs
=
int
(
max
(
model
.
stride
))
# grid size (max stride)
...
@@ -57,7 +130,6 @@ def run(weights='./yolov5s.pt', # weights path
...
@@ -57,7 +130,6 @@ def run(weights='./yolov5s.pt', # weights path
img
,
model
=
img
.
half
(),
model
.
half
()
# to FP16
img
,
model
=
img
.
half
(),
model
.
half
()
# to FP16
model
.
train
()
if
train
else
model
.
eval
()
# training mode = no Detect() layer grid construction
model
.
train
()
if
train
else
model
.
eval
()
# training mode = no Detect() layer grid construction
for
k
,
m
in
model
.
named_modules
():
for
k
,
m
in
model
.
named_modules
():
m
.
_non_persistent_buffers_set
=
set
()
# pytorch 1.6.0 compatibility
if
isinstance
(
m
,
Conv
):
# assign export-friendly activations
if
isinstance
(
m
,
Conv
):
# assign export-friendly activations
if
isinstance
(
m
.
act
,
nn
.
Hardswish
):
if
isinstance
(
m
.
act
,
nn
.
Hardswish
):
m
.
act
=
Hardswish
()
m
.
act
=
Hardswish
()
...
@@ -72,73 +144,13 @@ def run(weights='./yolov5s.pt', # weights path
...
@@ -72,73 +144,13 @@ def run(weights='./yolov5s.pt', # weights path
y
=
model
(
img
)
# dry runs
y
=
model
(
img
)
# dry runs
print
(
f
"
\n
{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)"
)
print
(
f
"
\n
{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)"
)
# TorchScript export -----------------------------------------------------------------------------------------------
# Exports
if
'torchscript'
in
include
or
'coreml'
in
include
:
prefix
=
colorstr
(
'TorchScript:'
)
try
:
print
(
f
'
\n
{prefix} starting export with torch {torch.__version__}...'
)
f
=
weights
.
replace
(
'.pt'
,
'.torchscript.pt'
)
# filename
ts
=
torch
.
jit
.
trace
(
model
,
img
,
strict
=
False
)
(
optimize_for_mobile
(
ts
)
if
optimize
else
ts
)
.
save
(
f
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
except
Exception
as
e
:
print
(
f
'{prefix} export failure: {e}'
)
# ONNX export ------------------------------------------------------------------------------------------------------
if
'onnx'
in
include
:
if
'onnx'
in
include
:
prefix
=
colorstr
(
'ONNX:'
)
export_onnx
(
model
,
img
,
file
,
opset_version
,
train
,
dynamic
,
simplify
)
try
:
if
'torchscript'
in
include
or
'coreml'
in
include
:
import
onnx
ts
=
export_torchscript
(
model
,
img
,
file
,
optimize
)
if
'coreml'
in
include
:
print
(
f
'{prefix} starting export with onnx {onnx.__version__}...'
)
export_coreml
(
ts
,
img
,
file
,
train
)
f
=
weights
.
replace
(
'.pt'
,
'.onnx'
)
# filename
torch
.
onnx
.
export
(
model
,
img
,
f
,
verbose
=
False
,
opset_version
=
opset_version
,
training
=
torch
.
onnx
.
TrainingMode
.
TRAINING
if
train
else
torch
.
onnx
.
TrainingMode
.
EVAL
,
do_constant_folding
=
not
train
,
input_names
=
[
'images'
],
output_names
=
[
'output'
],
dynamic_axes
=
{
'images'
:
{
0
:
'batch'
,
2
:
'height'
,
3
:
'width'
},
# shape(1,3,640,640)
'output'
:
{
0
:
'batch'
,
1
:
'anchors'
}
# shape(1,25200,85)
}
if
dynamic
else
None
)
# Checks
model_onnx
=
onnx
.
load
(
f
)
# load onnx model
onnx
.
checker
.
check_model
(
model_onnx
)
# check onnx model
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
# Simplify
if
simplify
:
try
:
check_requirements
([
'onnx-simplifier'
])
import
onnxsim
print
(
f
'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...'
)
model_onnx
,
check
=
onnxsim
.
simplify
(
model_onnx
,
dynamic_input_shape
=
dynamic
,
input_shapes
=
{
'images'
:
list
(
img
.
shape
)}
if
dynamic
else
None
)
assert
check
,
'assert check failed'
onnx
.
save
(
model_onnx
,
f
)
except
Exception
as
e
:
print
(
f
'{prefix} simplifier failure: {e}'
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
except
Exception
as
e
:
print
(
f
'{prefix} export failure: {e}'
)
# CoreML export ----------------------------------------------------------------------------------------------------
if
'coreml'
in
include
:
prefix
=
colorstr
(
'CoreML:'
)
try
:
import
coremltools
as
ct
print
(
f
'{prefix} starting export with coremltools {ct.__version__}...'
)
assert
train
,
'CoreML exports should be placed in model.train() mode with `python export.py --train`'
model
=
ct
.
convert
(
ts
,
inputs
=
[
ct
.
ImageType
(
'image'
,
shape
=
img
.
shape
,
scale
=
1
/
255.0
,
bias
=
[
0
,
0
,
0
])])
f
=
weights
.
replace
(
'.pt'
,
'.mlmodel'
)
# filename
model
.
save
(
f
)
print
(
f
'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)'
)
except
Exception
as
e
:
print
(
f
'{prefix} export failure: {e}'
)
# Finish
# Finish
print
(
f
'
\n
Export complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.'
)
print
(
f
'
\n
Export complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.'
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论