Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
4b52e19a
Unverified
提交
4b52e19a
authored
5月 29, 2021
作者:
Glenn Jocher
提交者:
GitHub
5月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
COCO evolution fix (#3388)
* COCO evolution fix * cleanup * update print * print fix
上级
21a9607e
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
28 行增加
和
30 行删除
+28
-30
train.py
train.py
+28
-30
没有找到文件。
train.py
浏览文件 @
4b52e19a
...
@@ -62,7 +62,6 @@ def train(hyp, opt, device, tb_writer=None):
...
@@ -62,7 +62,6 @@ def train(hyp, opt, device, tb_writer=None):
init_seeds
(
2
+
rank
)
init_seeds
(
2
+
rank
)
with
open
(
opt
.
data
)
as
f
:
with
open
(
opt
.
data
)
as
f
:
data_dict
=
yaml
.
safe_load
(
f
)
# data dict
data_dict
=
yaml
.
safe_load
(
f
)
# data dict
is_coco
=
opt
.
data
.
endswith
(
'coco.yaml'
)
# Logging- Doing this before checking the dataset. Might update data_dict
# Logging- Doing this before checking the dataset. Might update data_dict
loggers
=
{
'wandb'
:
None
}
# loggers dict
loggers
=
{
'wandb'
:
None
}
# loggers dict
...
@@ -78,6 +77,7 @@ def train(hyp, opt, device, tb_writer=None):
...
@@ -78,6 +77,7 @@ def train(hyp, opt, device, tb_writer=None):
nc
=
1
if
opt
.
single_cls
else
int
(
data_dict
[
'nc'
])
# number of classes
nc
=
1
if
opt
.
single_cls
else
int
(
data_dict
[
'nc'
])
# number of classes
names
=
[
'item'
]
if
opt
.
single_cls
and
len
(
data_dict
[
'names'
])
!=
1
else
data_dict
[
'names'
]
# class names
names
=
[
'item'
]
if
opt
.
single_cls
and
len
(
data_dict
[
'names'
])
!=
1
else
data_dict
[
'names'
]
# class names
assert
len
(
names
)
==
nc
,
'
%
g names found for nc=
%
g dataset in
%
s'
%
(
len
(
names
),
nc
,
opt
.
data
)
# check
assert
len
(
names
)
==
nc
,
'
%
g names found for nc=
%
g dataset in
%
s'
%
(
len
(
names
),
nc
,
opt
.
data
)
# check
is_coco
=
opt
.
data
.
endswith
(
'coco.yaml'
)
and
nc
==
80
# COCO dataset
# Model
# Model
pretrained
=
weights
.
endswith
(
'.pt'
)
pretrained
=
weights
.
endswith
(
'.pt'
)
...
@@ -358,6 +358,7 @@ def train(hyp, opt, device, tb_writer=None):
...
@@ -358,6 +358,7 @@ def train(hyp, opt, device, tb_writer=None):
single_cls
=
opt
.
single_cls
,
single_cls
=
opt
.
single_cls
,
dataloader
=
testloader
,
dataloader
=
testloader
,
save_dir
=
save_dir
,
save_dir
=
save_dir
,
save_json
=
is_coco
and
final_epoch
,
verbose
=
nc
<
50
and
final_epoch
,
verbose
=
nc
<
50
and
final_epoch
,
plots
=
plots
and
final_epoch
,
plots
=
plots
and
final_epoch
,
wandb_logger
=
wandb_logger
,
wandb_logger
=
wandb_logger
,
...
@@ -409,41 +410,38 @@ def train(hyp, opt, device, tb_writer=None):
...
@@ -409,41 +410,38 @@ def train(hyp, opt, device, tb_writer=None):
# end epoch ----------------------------------------------------------------------------------------------------
# end epoch ----------------------------------------------------------------------------------------------------
# end training
# end training
if
rank
in
[
-
1
,
0
]:
if
rank
in
[
-
1
,
0
]:
# Plots
logger
.
info
(
f
'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.
\n
'
)
if
plots
:
if
plots
:
plot_results
(
save_dir
=
save_dir
)
# save as results.png
plot_results
(
save_dir
=
save_dir
)
# save as results.png
if
wandb_logger
.
wandb
:
if
wandb_logger
.
wandb
:
files
=
[
'results.png'
,
'confusion_matrix.png'
,
*
[
f
'{x}_curve.png'
for
x
in
(
'F1'
,
'PR'
,
'P'
,
'R'
)]]
files
=
[
'results.png'
,
'confusion_matrix.png'
,
*
[
f
'{x}_curve.png'
for
x
in
(
'F1'
,
'PR'
,
'P'
,
'R'
)]]
wandb_logger
.
log
({
"Results"
:
[
wandb_logger
.
wandb
.
Image
(
str
(
save_dir
/
f
),
caption
=
f
)
for
f
in
files
wandb_logger
.
log
({
"Results"
:
[
wandb_logger
.
wandb
.
Image
(
str
(
save_dir
/
f
),
caption
=
f
)
for
f
in
files
if
(
save_dir
/
f
)
.
exists
()]})
if
(
save_dir
/
f
)
.
exists
()]})
# Test best.pt
logger
.
info
(
'
%
g epochs completed in
%.3
f hours.
\n
'
%
(
epoch
-
start_epoch
+
1
,
(
time
.
time
()
-
t0
)
/
3600
))
if
not
opt
.
evolve
:
if
opt
.
data
.
endswith
(
'coco.yaml'
)
and
nc
==
80
:
# if COCO
if
is_coco
:
# COCO dataset
for
m
in
[
last
,
best
]
if
best
.
exists
()
else
[
last
]:
# speed, mAP tests
for
m
in
[
last
,
best
]
if
best
.
exists
()
else
[
last
]:
# speed, mAP tests
results
,
_
,
_
=
test
.
test
(
opt
.
data
,
results
,
_
,
_
=
test
.
test
(
opt
.
data
,
batch_size
=
batch_size
*
2
,
batch_size
=
batch_size
*
2
,
imgsz
=
imgsz_test
,
imgsz
=
imgsz_test
,
conf_thres
=
0.001
,
conf_thres
=
0.001
,
iou_thres
=
0.7
,
iou_thres
=
0.7
,
model
=
attempt_load
(
m
,
device
)
.
half
(),
model
=
attempt_load
(
m
,
device
)
.
half
(),
single_cls
=
opt
.
single_cls
,
single_cls
=
opt
.
single_cls
,
dataloader
=
testloader
,
dataloader
=
testloader
,
save_dir
=
save_dir
,
save_dir
=
save_dir
,
save_json
=
True
,
save_json
=
True
,
plots
=
False
,
plots
=
False
,
is_coco
=
is_coco
)
is_coco
=
is_coco
)
# Strip optimizers
# Strip optimizers
final
=
best
if
best
.
exists
()
else
last
# final model
for
f
in
last
,
best
:
for
f
in
last
,
best
:
if
f
.
exists
():
if
f
.
exists
():
strip_optimizer
(
f
)
# strip optimizers
strip_optimizer
(
f
)
# strip optimizers
if
wandb_logger
.
wandb
:
# Log the stripped model
if
opt
.
bucket
:
wandb_logger
.
wandb
.
log_artifact
(
str
(
best
if
best
.
exists
()
else
last
),
type
=
'model'
,
os
.
system
(
f
'gsutil cp {final} gs://{opt.bucket}/weights'
)
# upload
name
=
'run_'
+
wandb_logger
.
wandb_run
.
id
+
'_model'
,
if
wandb_logger
.
wandb
and
not
opt
.
evolve
:
# Log the stripped model
aliases
=
[
'latest'
,
'best'
,
'stripped'
])
wandb_logger
.
wandb
.
log_artifact
(
str
(
final
),
type
=
'model'
,
name
=
'run_'
+
wandb_logger
.
wandb_run
.
id
+
'_model'
,
aliases
=
[
'latest'
,
'best'
,
'stripped'
])
wandb_logger
.
finish_run
()
wandb_logger
.
finish_run
()
else
:
else
:
dist
.
destroy_process_group
()
dist
.
destroy_process_group
()
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论