Unverified 提交 4d05472d authored 作者: Michel Promonet's avatar Michel Promonet 提交者: GitHub

Allow multiple-model serving from Flask REST API (#8973)

* allow to serve multiple models using flask restapi * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup * Update restapi.py Co-authored-by: 's avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
上级 d7bc5d77
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
""" """
Run a Flask REST API exposing a YOLOv5s model Run a Flask REST API exposing one or more YOLOv5s models
""" """
import argparse import argparse
...@@ -11,12 +11,13 @@ from flask import Flask, request ...@@ -11,12 +11,13 @@ from flask import Flask, request
from PIL import Image from PIL import Image
app = Flask(__name__) app = Flask(__name__)
models = {}
DETECTION_URL = "/v1/object-detection/yolov5s" DETECTION_URL = "/v1/object-detection/<model>"
@app.route(DETECTION_URL, methods=["POST"]) @app.route(DETECTION_URL, methods=["POST"])
def predict(): def predict(model):
if request.method != "POST": if request.method != "POST":
return return
...@@ -30,17 +31,18 @@ def predict(): ...@@ -30,17 +31,18 @@ def predict():
im_bytes = im_file.read() im_bytes = im_file.read()
im = Image.open(io.BytesIO(im_bytes)) im = Image.open(io.BytesIO(im_bytes))
results = model(im, size=640) # reduce size=320 for faster inference if model in models:
return results.pandas().xyxy[0].to_json(orient="records") results = models[model](im, size=640) # reduce size=320 for faster inference
return results.pandas().xyxy[0].to_json(orient="records")
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model") parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
parser.add_argument("--port", default=5000, type=int, help="port number") parser.add_argument("--port", default=5000, type=int, help="port number")
parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
opt = parser.parse_args() opt = parser.parse_args()
# Fix known issue urllib.error.HTTPError 403: rate limit exceeded https://github.com/ultralytics/yolov5/pull/7210 for m in opt.model:
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True)
model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache
app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论