提交 4e2d2460 authored 作者: Glenn Jocher's avatar Glenn Jocher

update yolo.py

上级 11ba5294
......@@ -59,10 +59,14 @@ class Model(nn.Module):
# Build strides, anchors
m = self.model[-1] # Detect()
m.stride = torch.tensor([128 / x.shape[-2] for x in self.forward(torch.zeros(1, ch, 128, 128))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
check_anchor_order(m)
self.stride = m.stride
if isinstance(m, Detect):
s = 128 # 2x min stride
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
check_anchor_order(m)
self.stride = m.stride
self._initialize_biases() # only run once
# print('Strides: %s' % m.stride.tolist())
# Init weights, biases
torch_utils.initialize_weights(self)
......@@ -146,7 +150,7 @@ class Model(nn.Module):
def parse_model(md, ch): # model_dict, input_channels(3)
print('\n%3s%15s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
anchors, nc, gd, gw = md['anchors'], md['nc'], md['depth_multiple'], md['width_multiple']
na = (len(anchors[0]) // 2) # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
......@@ -161,7 +165,7 @@ def parse_model(md, ch): # model_dict, input_channels(3)
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, BottleneckCSP, CrossConv]:
if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
c1, c2 = ch[f], args[0]
# Normal
......@@ -182,7 +186,7 @@ def parse_model(md, ch): # model_dict, input_channels(3)
# c2 = make_divisible(c2, 8) if c2 != no else c2
args = [c1, c2, *args[1:]]
if m is BottleneckCSP:
if m in [BottleneckCSP, C3]:
args.insert(2, n)
n = 1
elif m is nn.BatchNorm2d:
......@@ -198,7 +202,7 @@ def parse_model(md, ch): # model_dict, input_channels(3)
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in m_.parameters()]) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
print('%3s%15s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
print('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
ch.append(c2)
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论