Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
520f5de6
提交
520f5de6
authored
7月 10, 2020
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Label caching foundational re-write #306
上级
f310ca3b
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
51 行增加
和
54 行删除
+51
-54
datasets.py
utils/datasets.py
+51
-54
没有找到文件。
utils/datasets.py
浏览文件 @
520f5de6
...
...
@@ -26,6 +26,11 @@ for orientation in ExifTags.TAGS.keys():
break
def
get_hash
(
files
):
# Returns a single hash value of a list of files
return
sum
(
os
.
path
.
getsize
(
f
)
for
f
in
files
)
def
exif_size
(
img
):
# Returns exif-corrected PIL size
s
=
img
.
size
# (width, height)
...
...
@@ -280,7 +285,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
def
__init__
(
self
,
path
,
img_size
=
640
,
batch_size
=
16
,
augment
=
False
,
hyp
=
None
,
rect
=
False
,
image_weights
=
False
,
cache_images
=
False
,
single_cls
=
False
,
stride
=
32
,
pad
=
0.0
):
try
:
f
=
[]
f
=
[]
# image files
for
p
in
path
if
isinstance
(
path
,
list
)
else
[
path
]:
p
=
str
(
Path
(
p
))
# os-agnostic
parent
=
str
(
Path
(
p
)
.
parent
)
+
os
.
sep
...
...
@@ -292,7 +297,6 @@ class LoadImagesAndLabels(Dataset): # for training/testing
f
+=
glob
.
iglob
(
p
+
os
.
sep
+
'*.*'
)
else
:
raise
Exception
(
'
%
s does not exist'
%
p
)
path
=
p
# *.npy dir
self
.
img_files
=
[
x
.
replace
(
'/'
,
os
.
sep
)
for
x
in
f
if
os
.
path
.
splitext
(
x
)[
-
1
]
.
lower
()
in
img_formats
]
except
Exception
as
e
:
raise
Exception
(
'Error loading data from
%
s:
%
s
\n
See
%
s'
%
(
path
,
e
,
help_url
))
...
...
@@ -314,20 +318,22 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self
.
stride
=
stride
# Define labels
self
.
label_files
=
[
x
.
replace
(
'images'
,
'labels'
)
.
replace
(
os
.
path
.
splitext
(
x
)[
-
1
],
'.txt'
)
for
x
in
self
.
img_files
]
# Read image shapes (wh)
sp
=
path
.
replace
(
'.txt'
,
''
)
+
'.shapes'
# shapefile path
try
:
with
open
(
sp
,
'r'
)
as
f
:
# read existing shapefile
s
=
[
x
.
split
()
for
x
in
f
.
read
()
.
splitlines
()]
assert
len
(
s
)
==
n
,
'Shapefile out of sync'
except
:
s
=
[
exif_size
(
Image
.
open
(
f
))
for
f
in
tqdm
(
self
.
img_files
,
desc
=
'Reading image shapes'
)]
np
.
savetxt
(
sp
,
s
,
fmt
=
'
%
g'
)
# overwrites existing (if any)
self
.
label_files
=
[
x
.
replace
(
'images'
,
'labels'
)
.
replace
(
os
.
path
.
splitext
(
x
)[
-
1
],
'.txt'
)
for
x
in
self
.
img_files
]
# Check cache
cache_path
=
str
(
Path
(
self
.
label_files
[
0
])
.
parent
)
+
'.cache'
# cached labels
if
os
.
path
.
isfile
(
cache_path
):
cache
=
torch
.
load
(
cache_path
)
# load
if
cache
[
'hash'
]
!=
get_hash
(
self
.
label_files
+
self
.
img_files
):
# dataset changed
cache
=
self
.
cache_labels
(
cache_path
)
# re-cache
else
:
cache
=
self
.
cache_labels
(
cache_path
)
# cache
self
.
shapes
=
np
.
array
(
s
,
dtype
=
np
.
float64
)
# Get labels
labels
,
shapes
=
zip
(
*
[
cache
[
x
]
for
x
in
self
.
img_files
])
self
.
shapes
=
np
.
array
(
shapes
,
dtype
=
np
.
float64
)
self
.
labels
=
list
(
labels
)
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if
self
.
rect
:
...
...
@@ -353,33 +359,11 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self
.
batch_shapes
=
np
.
ceil
(
np
.
array
(
shapes
)
*
img_size
/
stride
+
pad
)
.
astype
(
np
.
int
)
*
stride
# Cache labels
self
.
imgs
=
[
None
]
*
n
self
.
labels
=
[
np
.
zeros
((
0
,
5
),
dtype
=
np
.
float32
)]
*
n
create_datasubset
,
extract_bounding_boxes
,
labels_loaded
=
False
,
False
,
False
nm
,
nf
,
ne
,
ns
,
nd
=
0
,
0
,
0
,
0
,
0
# number missing, found, empty, datasubset, duplicate
np_labels_path
=
str
(
Path
(
self
.
label_files
[
0
])
.
parent
)
+
'.npy'
# saved labels in *.npy file
if
os
.
path
.
isfile
(
np_labels_path
):
s
=
np_labels_path
# print string
x
=
np
.
load
(
np_labels_path
,
allow_pickle
=
True
)
if
len
(
x
)
==
n
:
self
.
labels
=
x
labels_loaded
=
True
else
:
s
=
path
.
replace
(
'images'
,
'labels'
)
pbar
=
tqdm
(
self
.
label_files
)
for
i
,
file
in
enumerate
(
pbar
):
if
labels_loaded
:
l
=
self
.
labels
[
i
]
# np.savetxt(file, l, '%g') # save *.txt from *.npy file
else
:
try
:
with
open
(
file
,
'r'
)
as
f
:
l
=
np
.
array
([
x
.
split
()
for
x
in
f
.
read
()
.
splitlines
()],
dtype
=
np
.
float32
)
except
:
nm
+=
1
# print('missing labels for image %s' % self.img_files[i]) # file missing
continue
l
=
self
.
labels
[
i
]
# label
if
l
.
shape
[
0
]:
assert
l
.
shape
[
1
]
==
5
,
'> 5 label columns:
%
s'
%
file
assert
(
l
>=
0
)
.
all
(),
'negative labels:
%
s'
%
file
...
...
@@ -425,15 +409,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing
ne
+=
1
# print('empty labels for image %s' % self.img_files[i]) # file empty
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
pbar
.
desc
=
'Caching labels
%
s (
%
g found,
%
g missing,
%
g empty,
%
g duplicate, for
%
g images)'
%
(
s
,
nf
,
nm
,
ne
,
nd
,
n
)
assert
nf
>
0
or
n
==
20288
,
'No labels found in
%
s. See
%
s'
%
(
os
.
path
.
dirname
(
file
)
+
os
.
sep
,
help_url
)
if
not
labels_loaded
and
n
>
1000
:
print
(
'Saving labels to
%
s for faster future loading'
%
np_labels_path
)
np
.
save
(
np_labels_path
,
self
.
labels
)
# save for next time
pbar
.
desc
=
'Scanning labels
%
s (
%
g found,
%
g missing,
%
g empty,
%
g duplicate, for
%
g images)'
%
(
cache_path
,
nf
,
nm
,
ne
,
nd
,
n
)
assert
nf
>
0
,
'No labels found in
%
s. See
%
s'
%
(
os
.
path
.
dirname
(
file
)
+
os
.
sep
,
help_url
)
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
if
cache_images
:
# if training
self
.
imgs
=
[
None
]
*
n
if
cache_images
:
gb
=
0
# Gigabytes of cached images
pbar
=
tqdm
(
range
(
len
(
self
.
img_files
)),
desc
=
'Caching images'
)
self
.
img_hw0
,
self
.
img_hw
=
[
None
]
*
n
,
[
None
]
*
n
...
...
@@ -442,15 +424,30 @@ class LoadImagesAndLabels(Dataset): # for training/testing
gb
+=
self
.
imgs
[
i
]
.
nbytes
pbar
.
desc
=
'Caching images (
%.1
fGB)'
%
(
gb
/
1E9
)
# Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
detect_corrupted_images
=
False
if
detect_corrupted_images
:
from
skimage
import
io
# conda install -c conda-forge scikit-image
for
file
in
tqdm
(
self
.
img_files
,
desc
=
'Detecting corrupted images'
):
try
:
_
=
io
.
imread
(
file
)
except
:
print
(
'Corrupted image detected:
%
s'
%
file
)
def
cache_labels
(
self
,
path
=
'labels.cache'
):
# Cache dataset labels, check images and read shapes
x
=
{}
# dict
pbar
=
tqdm
(
zip
(
self
.
img_files
,
self
.
label_files
),
desc
=
'Scanning images'
,
total
=
len
(
self
.
img_files
))
for
(
img
,
label
)
in
pbar
:
try
:
l
=
[]
image
=
Image
.
open
(
img
)
image
.
verify
()
# PIL verify
# _ = io.imread(img) # skimage verify (from skimage import io)
shape
=
exif_size
(
image
)
# image size
if
os
.
path
.
isfile
(
label
):
with
open
(
label
,
'r'
)
as
f
:
l
=
np
.
array
([
x
.
split
()
for
x
in
f
.
read
()
.
splitlines
()],
dtype
=
np
.
float32
)
# labels
if
len
(
l
)
==
0
:
l
=
np
.
zeros
((
0
,
5
),
dtype
=
np
.
float32
)
x
[
img
]
=
[
l
,
shape
]
except
Exception
as
e
:
x
[
img
]
=
None
print
(
'WARNING:
%
s:
%
s'
%
(
img
,
e
))
x
[
'hash'
]
=
get_hash
(
self
.
label_files
+
self
.
img_files
)
torch
.
save
(
x
,
path
)
# save for next time
return
x
def
__len__
(
self
):
return
len
(
self
.
img_files
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论