Unverified 提交 62409eea authored 作者: Ayush Chaurasia's avatar Ayush Chaurasia 提交者: GitHub

W&B sweeps support (#3938)

* Add support for W&B Sweeps * Update and reformat * Update search space * reformat * reformat sweep.py * Update sweep.py * Move sweeps files to wandb dir * Remove print Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
上级 720aaa65
import sys
from pathlib import Path
import wandb
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[2].as_posix()) # add utils/ to path
from train import train, parse_opt
import test
from utils.general import increment_path
from utils.torch_utils import select_device
def sweep():
wandb.init()
# Get hyp dict from sweep agent
hyp_dict = vars(wandb.config).get("_items")
# Workaround: get necessary opt args
opt = parse_opt(known=True)
opt.batch_size = hyp_dict.get("batch_size")
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
opt.epochs = hyp_dict.get("epochs")
opt.nosave = True
opt.data = hyp_dict.get("data")
device = select_device(opt.device, batch_size=opt.batch_size)
# train
train(hyp_dict, opt, device)
if __name__ == "__main__":
sweep()
# Hyperparameters for training
# To set range-
# Provide min and max values as:
# parameter:
#
# min: scalar
# max: scalar
# OR
#
# Set a specific list of search space-
# parameter:
# values: [scalar1, scalar2, scalar3...]
#
# You can use grid, bayesian and hyperopt search strategy
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
program: utils/wandb_logging/sweep.py
method: random
metric:
name: metrics/mAP_0.5
goal: maximize
parameters:
# hyperparameters: set either min, max range or values list
data:
value: "data/coco128.yaml"
batch_size:
values: [ 64 ]
epochs:
values: [ 10 ]
lr0:
distribution: uniform
min: 1e-5
max: 1e-1
lrf:
distribution: uniform
min: 0.01
max: 1.0
momentum:
distribution: uniform
min: 0.6
max: 0.98
weight_decay:
distribution: uniform
min: 0.0
max: 0.001
warmup_epochs:
distribution: uniform
min: 0.0
max: 5.0
warmup_momentum:
distribution: uniform
min: 0.0
max: 0.95
warmup_bias_lr:
distribution: uniform
min: 0.0
max: 0.2
box:
distribution: uniform
min: 0.02
max: 0.2
cls:
distribution: uniform
min: 0.2
max: 4.0
cls_pw:
distribution: uniform
min: 0.5
max: 2.0
obj:
distribution: uniform
min: 0.2
max: 4.0
obj_pw:
distribution: uniform
min: 0.5
max: 2.0
iou_t:
distribution: uniform
min: 0.1
max: 0.7
anchor_t:
distribution: uniform
min: 2.0
max: 8.0
fl_gamma:
distribution: uniform
min: 0.0
max: 0.1
hsv_h:
distribution: uniform
min: 0.0
max: 0.1
hsv_s:
distribution: uniform
min: 0.0
max: 0.9
hsv_v:
distribution: uniform
min: 0.0
max: 0.9
degrees:
distribution: uniform
min: 0.0
max: 45.0
translate:
distribution: uniform
min: 0.0
max: 0.9
scale:
distribution: uniform
min: 0.0
max: 0.9
shear:
distribution: uniform
min: 0.0
max: 10.0
perspective:
distribution: uniform
min: 0.0
max: 0.001
flipud:
distribution: uniform
min: 0.0
max: 1.0
fliplr:
distribution: uniform
min: 0.0
max: 1.0
mosaic:
distribution: uniform
min: 0.0
max: 1.0
mixup:
distribution: uniform
min: 0.0
max: 1.0
copy_paste:
distribution: uniform
min: 0.0
max: 1.0
......@@ -153,7 +153,7 @@ class WandbLogger():
self.weights = Path(modeldir) / "last.pt"
config = self.wandb_run.config
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
config.opt['hyp']
data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论