Unverified 提交 7043872f authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

PyTorch Hub `_verbose=False` fix2 (#7550)

* PyTorch Hub `_verbose=False` fix2 * Update downloads.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update * Update * Update * Update * Update * Update * Update * Update Co-authored-by: 's avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
上级 1f1ec1c3
......@@ -36,6 +36,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
if not verbose:
LOGGER.setLevel(logging.WARNING)
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
name = Path(name)
path = name.with_suffix('.pt') if name.suffix == '' else name # checkpoint path
......@@ -65,63 +66,63 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
raise Exception(s) from e
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
# YOLOv5 custom or local model
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-nano model https://github.com/ultralytics/yolov5
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-small model https://github.com/ultralytics/yolov5
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-medium model https://github.com/ultralytics/yolov5
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-large model https://github.com/ultralytics/yolov5
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
if __name__ == '__main__':
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
# model = custom(path='path/to/model.pt') # custom
# Verify inference
......
......@@ -54,7 +54,7 @@ from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import check_font, plot_evolve, plot_labels
from utils.plots import plot_evolve, plot_labels
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
......@@ -105,8 +105,6 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
init_seeds(1 + RANK)
with torch_distributed_zero_first(LOCAL_RANK):
data_dict = data_dict or check_dataset(data) # check if None
if not is_ascii(data_dict['names']): # non-latin labels, i.e. asian, arabic, cyrillic
check_font('Arial.Unicode.ttf', progress=True)
train_path, val_path = data_dict['train'], data_dict['val']
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
......
......@@ -3,6 +3,7 @@
Download utils
"""
import logging
import os
import platform
import subprocess
......@@ -23,27 +24,30 @@ def gsutil_getsize(url=''):
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
from utils.general import LOGGER
file = Path(file)
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
try: # url1
print(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, str(file))
LOGGER.info(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
except Exception as e: # url2
file.unlink(missing_ok=True) # remove partial downloads
print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
finally:
if not file.exists() or file.stat().st_size < min_bytes: # check
file.unlink(missing_ok=True) # remove partial downloads
print(f"ERROR: {assert_msg}\n{error_msg}")
print('')
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
LOGGER.info('')
def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads import *; attempt_download()
# Attempt file download if does not exist
file = Path(str(file).strip().replace("'", ''))
from utils.general import LOGGER
file = Path(str(file).strip().replace("'", ''))
if not file.exists():
# URL specified
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
......@@ -51,7 +55,7 @@ def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads i
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
if Path(file).is_file():
print(f'Found {url} locally at {file}') # file already exists
LOGGER.info(f'Found {url} locally at {file}') # file already exists
else:
safe_download(file=file, url=url, min_bytes=1E5)
return file
......
......@@ -490,6 +490,7 @@ def check_dataset(data, autodownload=True):
else:
raise Exception(emojis('Dataset not found ❌'))
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
return data # dictionary
......
......@@ -66,9 +66,6 @@ def check_pil_font(font=FONT, size=10):
class Annotator:
if RANK in (-1, 0):
check_pil_font() # download TTF if necessary
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论