Unverified 提交 7f164069 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

Update hubconf.py (#1210)

上级 d3dad422
......@@ -11,8 +11,11 @@ import os
import torch
from models.yolo import Model
from utils.general import set_logging
from utils.google_utils import attempt_download
set_logging()
def create(name, pretrained, channels, classes):
"""Creates a specified YOLOv5 model
......@@ -26,16 +29,19 @@ def create(name, pretrained, channels, classes):
Returns:
pytorch model
"""
config = os.path.join(os.path.dirname(__file__), 'models', '%s.yaml' % name) # model.yaml path
config = os.path.join(os.path.dirname(__file__), 'models', f'{name}.yaml') # model.yaml path
try:
model = Model(config, channels, classes)
if pretrained:
ckpt = '%s.pt' % name # checkpoint filename
attempt_download(ckpt) # download if not found locally
state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() # to FP32
fname = f'{name}.pt' # checkpoint filename
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
model.load_state_dict(state_dict, strict=False) # load
# model = model.autoshape() # cv2/PIL/np/torch inference: predictions = model(Image.open('image.jpg'))
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
# model = model.autoshape() # for autoshaping of PIL/cv2/np inputs and NMS
return model
except Exception as e:
......@@ -98,3 +104,7 @@ def yolov5x(pretrained=False, channels=3, classes=80):
pytorch model
"""
return create('yolov5x', pretrained, channels, classes)
if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # example
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论