Unverified 提交 95aefea4 authored 作者: Aditya Lohia's avatar Aditya Lohia 提交者: GitHub

Dynamic ONNX engine generation (#2208)

* add: dynamic onnx export * delete: test onnx inference * fix dynamic output axis * Code reduction * fix: dynamic output axes, dynamic input naming * Remove fixed axes Co-authored-by: 's avatarShivam Swanrkar <ss8464@nyu.edu> Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
上级 e27ca0d8
...@@ -22,6 +22,7 @@ if __name__ == '__main__': ...@@ -22,6 +22,7 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/ parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--batch-size', type=int, default=1, help='batch size')
opt = parser.parse_args() opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
...@@ -70,7 +71,9 @@ if __name__ == '__main__': ...@@ -70,7 +71,9 @@ if __name__ == '__main__':
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename f = opt.weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
output_names=['classes', 'boxes'] if y is None else ['output']) output_names=['classes', 'boxes'] if y is None else ['output'],
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
# Checks # Checks
onnx_model = onnx.load(f) # load onnx model onnx_model = onnx.load(f) # load onnx model
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论