Unverified 提交 9c7bb5a5 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

ACON Activation batch-size 1 bug patch (#2901)

* ACON Activation batch-size 1 bug path This is not a great solution to https://github.com/nmaac/acon/issues/4 but it's all I could think of at the moment. WARNING: YOLOv5 models with MetaAconC() activations are incapable of running inference at batch-size 1 properly due to a known bug in https://github.com/nmaac/acon/issues/4 with no known solution. * Update activations.py * Update activations.py * Update activations.py * Update activations.py
上级 c0d3f805
......@@ -84,13 +84,15 @@ class MetaAconC(nn.Module):
c2 = max(r, c1 // r)
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=False)
self.bn1 = nn.BatchNorm2d(c2)
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=False)
self.bn2 = nn.BatchNorm2d(c1)
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
# self.bn1 = nn.BatchNorm2d(c2)
# self.bn2 = nn.BatchNorm2d(c1)
def forward(self, x):
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论