Unverified 提交 b3ceffb5 authored 作者: yxNONG's avatar yxNONG 提交者: GitHub

Add QFocalLoss() (#1482)

* Update loss.py implement the quality focal loss which is a more general case of focal loss more detail in https://arxiv.org/abs/2006.04388 In the obj loss (or the case cls loss with label smooth), the targets is no long barely be 0 or 1 (can be 0.7), in this case, the normal focal loss is not work accurately quality focal loss in behave the same as focal loss when the target is equal to 0 or 1, and work accurately when targets in (0, 1) example: targets: tensor([[0.6225, 0.0000, 0.0000], [0.9000, 0.0000, 0.0000], [1.0000, 0.0000, 0.0000]]) ___________________________ pred_prob: tensor([[0.6225, 0.2689, 0.1192], [0.7773, 0.5000, 0.2227], [0.8176, 0.8808, 0.1978]]) ____________________________ focal_loss tensor([[0.0937, 0.0328, 0.0039], [0.0166, 0.1838, 0.0199], [0.0039, 1.3186, 0.0145]]) ______________ qfocal_loss tensor([[7.5373e-08, 3.2768e-02, 3.9179e-03], [4.8601e-03, 1.8380e-01, 1.9857e-02], [3.9233e-03, 1.3186e+00, 1.4545e-02]]) we can see that targets[0][0] = 0.6255 is almost the same as pred_prob[0][0] = 0.6225, the targets[1][0] = 0.9 is greater then pred_prob[1][0] = 0.7773 by 0.1227 however, the focal loss[0][0] = 0.0937 larger then focal loss[1][0] = 0.0166 (which against the purpose of focal loss) for the quality focal loss , it implement the case of targets not equal to 0 or 1 * Update loss.py
上级 7d629fde
...@@ -57,6 +57,32 @@ class FocalLoss(nn.Module): ...@@ -57,6 +57,32 @@ class FocalLoss(nn.Module):
return loss.sum() return loss.sum()
else: # 'none' else: # 'none'
return loss return loss
class QFocalLoss(nn.Module):
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super(QFocalLoss, self).__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = 'none' # required to apply FL to each element
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred_prob = torch.sigmoid(pred) # prob from logits
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
return loss
def compute_loss(p, targets, model): # predictions, targets, model def compute_loss(p, targets, model): # predictions, targets, model
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论