Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
bf6f4156
提交
bf6f4156
authored
7月 09, 2020
作者:
Glenn Jocher
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
hyperparameter printout update
上级
0fef3f66
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
15 行增加
和
16 行删除
+15
-16
test.py
test.py
+0
-1
train.py
train.py
+9
-10
utils.py
utils/utils.py
+6
-5
没有找到文件。
test.py
浏览文件 @
bf6f4156
...
...
@@ -19,7 +19,6 @@ def test(data,
dataloader
=
None
,
save_dir
=
''
,
merge
=
False
):
# Initialize/load model and set device
training
=
model
is
not
None
if
training
:
# called by train.py
...
...
train.py
浏览文件 @
bf6f4156
...
...
@@ -20,9 +20,8 @@ except:
print
(
'Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex'
)
mixed_precision
=
False
# not installed
# Hyperparameters
hyp
=
{
'optimizer'
:
'SGD'
,
# ['adam', 'SGD', None] if none, default is SGD
hyp
=
{
'optimizer'
:
'SGD'
,
# ['adam', 'SGD', None] if none, default is SGD
'lr0'
:
0.01
,
# initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum'
:
0.937
,
# SGD momentum/Adam beta1
'weight_decay'
:
5e-4
,
# optimizer weight decay
...
...
@@ -44,6 +43,7 @@ hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD
def
train
(
hyp
):
print
(
f
'Hyperparameters {hyp}'
)
log_dir
=
tb_writer
.
log_dir
# run directory
wdir
=
str
(
Path
(
log_dir
)
/
'weights'
)
+
os
.
sep
# weights directory
...
...
@@ -90,7 +90,7 @@ def train(hyp):
pg0
.
append
(
v
)
# all else
if
hyp
[
'optimizer'
]
==
'adam'
:
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
optimizer
=
optim
.
Adam
(
pg0
,
lr
=
hyp
[
'lr0'
],
betas
=
(
hyp
[
'momentum'
],
0.999
))
# adjust beta1 to momentum
optimizer
=
optim
.
Adam
(
pg0
,
lr
=
hyp
[
'lr0'
],
betas
=
(
hyp
[
'momentum'
],
0.999
))
# adjust beta1 to momentum
else
:
optimizer
=
optim
.
SGD
(
pg0
,
lr
=
hyp
[
'lr0'
],
momentum
=
hyp
[
'momentum'
],
nesterov
=
True
)
...
...
@@ -176,7 +176,7 @@ def train(hyp):
yaml
.
dump
(
hyp
,
f
,
sort_keys
=
False
)
with
open
(
Path
(
log_dir
)
/
'opt.yaml'
,
'w'
)
as
f
:
yaml
.
dump
(
vars
(
opt
),
f
,
sort_keys
=
False
)
# Class frequency
labels
=
np
.
concatenate
(
dataset
.
labels
,
0
)
c
=
torch
.
tensor
(
labels
[:,
0
])
# classes
...
...
@@ -365,7 +365,8 @@ if __name__ == '__main__':
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
16
)
parser
.
add_argument
(
'--img-size'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
640
,
640
],
help
=
'train,test sizes'
)
parser
.
add_argument
(
'--rect'
,
action
=
'store_true'
,
help
=
'rectangular training'
)
parser
.
add_argument
(
'--resume'
,
nargs
=
'?'
,
const
=
'get_last'
,
default
=
False
,
help
=
'resume from given path/to/last.pt, or most recent run if blank.'
)
parser
.
add_argument
(
'--resume'
,
nargs
=
'?'
,
const
=
'get_last'
,
default
=
False
,
help
=
'resume from given path/to/last.pt, or most recent run if blank.'
)
parser
.
add_argument
(
'--nosave'
,
action
=
'store_true'
,
help
=
'only save final checkpoint'
)
parser
.
add_argument
(
'--notest'
,
action
=
'store_true'
,
help
=
'only test final epoch'
)
parser
.
add_argument
(
'--noautoanchor'
,
action
=
'store_true'
,
help
=
'disable autoanchor check'
)
...
...
@@ -378,14 +379,14 @@ if __name__ == '__main__':
parser
.
add_argument
(
'--multi-scale'
,
action
=
'store_true'
,
help
=
'vary img-size +/- 50
%%
'
)
parser
.
add_argument
(
'--single-cls'
,
action
=
'store_true'
,
help
=
'train as single-class dataset'
)
opt
=
parser
.
parse_args
()
last
=
get_latest_run
()
if
opt
.
resume
==
'get_last'
else
opt
.
resume
# resume from most recent run
if
last
and
not
opt
.
weights
:
print
(
f
'Resuming training from {last}'
)
opt
.
weights
=
last
if
opt
.
resume
and
not
opt
.
weights
else
opt
.
weights
opt
.
cfg
=
check_file
(
opt
.
cfg
)
# check file
opt
.
data
=
check_file
(
opt
.
data
)
# check file
opt
.
hyp
=
check_file
(
opt
.
hyp
)
if
opt
.
hyp
else
''
# check file
opt
.
hyp
=
check_file
(
opt
.
hyp
)
if
opt
.
hyp
else
''
# check file
print
(
opt
)
opt
.
img_size
.
extend
([
opt
.
img_size
[
-
1
]]
*
(
2
-
len
(
opt
.
img_size
)))
# extend to 2 sizes (train, test)
device
=
torch_utils
.
select_device
(
opt
.
device
,
apex
=
mixed_precision
,
batch_size
=
opt
.
batch_size
)
...
...
@@ -394,14 +395,12 @@ if __name__ == '__main__':
# Train
if
not
opt
.
evolve
:
print
(
'Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/'
)
tb_writer
=
SummaryWriter
(
comment
=
opt
.
name
)
if
opt
.
hyp
:
# update hyps
with
open
(
opt
.
hyp
)
as
f
:
hyp
.
update
(
yaml
.
load
(
f
,
Loader
=
yaml
.
FullLoader
))
print
(
f
'Beginning training with {hyp}
\n\n
'
)
print
(
'Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/'
)
train
(
hyp
)
# Evolve hyperparameters (optional)
...
...
utils/utils.py
浏览文件 @
bf6f4156
...
...
@@ -37,10 +37,10 @@ def init_seeds(seed=0):
torch_utils
.
init_seeds
(
seed
=
seed
)
def
get_latest_run
(
search_dir
=
'./runs'
):
def
get_latest_run
(
search_dir
=
'./runs'
):
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
last_list
=
glob
.
glob
(
f
'{search_dir}/**/last*.pt'
,
recursive
=
True
)
return
max
(
last_list
,
key
=
os
.
path
.
getctime
)
last_list
=
glob
.
glob
(
f
'{search_dir}/**/last*.pt'
,
recursive
=
True
)
return
max
(
last_list
,
key
=
os
.
path
.
getctime
)
def
check_git_status
():
...
...
@@ -1113,7 +1113,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_st
plt
.
savefig
(
f
.
replace
(
'.txt'
,
'.png'
),
dpi
=
200
)
def
plot_labels
(
labels
,
save_dir
=
''
):
def
plot_labels
(
labels
,
save_dir
=
''
):
# plot dataset labels
c
,
b
=
labels
[:,
0
],
labels
[:,
1
:]
.
transpose
()
# classees, boxes
...
...
@@ -1180,7 +1180,8 @@ def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_re
fig
.
savefig
(
f
.
replace
(
'.txt'
,
'.png'
),
dpi
=
200
)
def
plot_results
(
start
=
0
,
stop
=
0
,
bucket
=
''
,
id
=
(),
labels
=
(),
save_dir
=
''
):
# from utils.utils import *; plot_results()
def
plot_results
(
start
=
0
,
stop
=
0
,
bucket
=
''
,
id
=
(),
labels
=
(),
save_dir
=
''
):
# from utils.utils import *; plot_results()
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
fig
,
ax
=
plt
.
subplots
(
2
,
5
,
figsize
=
(
12
,
6
))
ax
=
ax
.
ravel
()
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论