Unverified 提交 c1a44ed9 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

Update hubconf.py for unified loading (#3005)

上级 37eaffec
......@@ -18,7 +18,7 @@ dependencies = ['torch', 'yaml']
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
def create(name, pretrained, channels, classes, autoshape, verbose):
def create(name, pretrained, channels=3, classes=80, autoshape=True, verbose=True):
"""Creates a specified YOLOv5 model
Arguments:
......@@ -33,7 +33,7 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
YOLOv5 pytorch model
"""
set_logging(verbose=verbose)
fname = f'{name}.pt' # checkpoint filename
fname = Path(name).with_suffix('.pt') # checkpoint filename
try:
if pretrained and channels == 3 and classes == 80:
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
......@@ -60,30 +60,9 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
raise Exception(s) from e
def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
"""YOLOv5-custom model https://github.com/ultralytics/yolov5
Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
Returns:
pytorch model
"""
set_logging(verbose=verbose)
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['ema' if model.get('ema') else 'model'] # load model
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
if autoshape:
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return hub_model.to(device)
def custom(path='path/to/model.pt', autoshape=True, verbose=True):
# YOLOv5 custom or local model
return create(path, autoshape, verbose)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
......@@ -127,7 +106,8 @@ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=Tr
if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
model = create(name='weights/yolov5s.pt', pretrained=True, channels=3, classes=80, autoshape=True,
verbose=True) # pretrained
# model = custom(path_or_model='path/to/model.pt') # custom
# Verify inference
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论