Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
c6c88dc6
Unverified
提交
c6c88dc6
authored
6月 30, 2021
作者:
Glenn Jocher
提交者:
GitHub
6月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Copy-Paste augmentation for YOLOv5 (#3845)
* Copy-paste augmentation initial commit * if any segments * Add obscuration rejection * Add copy_paste hyperparameter * Update comments
上级
25d1f293
隐藏空白字符变更
内嵌
并排
正在显示
7 个修改的文件
包含
58 行增加
和
21 行删除
+58
-21
hyp.finetune.yaml
data/hyps/hyp.finetune.yaml
+1
-0
hyp.finetune_objects365.yaml
data/hyps/hyp.finetune_objects365.yaml
+1
-0
hyp.scratch-p6.yaml
data/hyps/hyp.scratch-p6.yaml
+1
-0
hyp.scratch.yaml
data/hyps/hyp.scratch.yaml
+1
-0
train.py
train.py
+3
-2
datasets.py
utils/datasets.py
+26
-18
metrics.py
utils/metrics.py
+25
-1
没有找到文件。
data/hyps/hyp.finetune.yaml
浏览文件 @
c6c88dc6
...
...
@@ -36,3 +36,4 @@ flipud: 0.00856
fliplr
:
0.5
mosaic
:
1.0
mixup
:
0.243
copy_paste
:
0.0
data/hyps/hyp.finetune_objects365.yaml
浏览文件 @
c6c88dc6
...
...
@@ -26,3 +26,4 @@ flipud: 0.0
fliplr
:
0.5
mosaic
:
1.0
mixup
:
0.0
copy_paste
:
0.0
data/hyps/hyp.scratch-p6.yaml
浏览文件 @
c6c88dc6
...
...
@@ -31,3 +31,4 @@ flipud: 0.0 # image flip up-down (probability)
fliplr
:
0.5
# image flip left-right (probability)
mosaic
:
1.0
# image mosaic (probability)
mixup
:
0.0
# image mixup (probability)
copy_paste
:
0.0
# segment copy-paste (probability)
data/hyps/hyp.scratch.yaml
浏览文件 @
c6c88dc6
...
...
@@ -31,3 +31,4 @@ flipud: 0.0 # image flip up-down (probability)
fliplr
:
0.5
# image flip left-right (probability)
mosaic
:
1.0
# image mosaic (probability)
mixup
:
0.0
# image mixup (probability)
copy_paste
:
0.0
# segment copy-paste (probability)
train.py
浏览文件 @
c6c88dc6
...
...
@@ -6,7 +6,6 @@ Usage:
import
argparse
import
logging
import
math
import
os
import
random
import
sys
...
...
@@ -16,6 +15,7 @@ from copy import deepcopy
from
pathlib
import
Path
from
threading
import
Thread
import
math
import
numpy
as
np
import
torch.distributed
as
dist
import
torch.nn
as
nn
...
...
@@ -591,7 +591,8 @@ def main(opt):
'flipud'
:
(
1
,
0.0
,
1.0
),
# image flip up-down (probability)
'fliplr'
:
(
0
,
0.0
,
1.0
),
# image flip left-right (probability)
'mosaic'
:
(
1
,
0.0
,
1.0
),
# image mixup (probability)
'mixup'
:
(
1
,
0.0
,
1.0
)}
# image mixup (probability)
'mixup'
:
(
1
,
0.0
,
1.0
),
# image mixup (probability)
'copy_paste'
:
(
1
,
0.0
,
1.0
)}
# segment copy-paste (probability)
with
open
(
opt
.
hyp
)
as
f
:
hyp
=
yaml
.
safe_load
(
f
)
# load hyps dict
...
...
utils/datasets.py
浏览文件 @
c6c88dc6
...
...
@@ -25,6 +25,7 @@ from tqdm import tqdm
from
utils.general
import
check_requirements
,
check_file
,
check_dataset
,
xywh2xyxy
,
xywhn2xyxy
,
xyxy2xywhn
,
\
xyn2xy
,
segment2box
,
segments2boxes
,
resample_segments
,
clean_str
from
utils.metrics
import
bbox_ioa
from
utils.torch_utils
import
torch_distributed_zero_first
# Parameters
...
...
@@ -683,6 +684,7 @@ def load_mosaic(self, index):
# img4, labels4 = replicate(img4, labels4) # replicate
# Augment
img4
,
labels4
,
segments4
=
copy_paste
(
img4
,
labels4
,
segments4
,
probability
=
self
.
hyp
[
'copy_paste'
])
img4
,
labels4
=
random_perspective
(
img4
,
labels4
,
segments4
,
degrees
=
self
.
hyp
[
'degrees'
],
translate
=
self
.
hyp
[
'translate'
],
...
...
@@ -907,6 +909,30 @@ def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, s
return
img
,
targets
def
copy_paste
(
img
,
labels
,
segments
,
probability
=
0.5
):
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
n
=
len
(
segments
)
if
probability
and
n
:
h
,
w
,
c
=
img
.
shape
# height, width, channels
im_new
=
np
.
zeros
(
img
.
shape
,
np
.
uint8
)
for
j
in
random
.
sample
(
range
(
n
),
k
=
round
(
probability
*
n
)):
l
,
s
=
labels
[
j
],
segments
[
j
]
box
=
w
-
l
[
3
],
l
[
2
],
w
-
l
[
1
],
l
[
4
]
ioa
=
bbox_ioa
(
box
,
labels
[:,
1
:
5
])
# intersection over area
if
(
ioa
<
0.30
)
.
all
():
# allow 30% obscuration of existing labels
labels
=
np
.
concatenate
((
labels
,
[[
l
[
0
],
*
box
]]),
0
)
segments
.
append
(
np
.
concatenate
((
w
-
s
[:,
0
:
1
],
s
[:,
1
:
2
]),
1
))
cv2
.
drawContours
(
im_new
,
[
segments
[
j
]
.
astype
(
np
.
int32
)],
-
1
,
(
255
,
255
,
255
),
cv2
.
FILLED
)
result
=
cv2
.
bitwise_and
(
src1
=
img
,
src2
=
im_new
)
result
=
cv2
.
flip
(
result
,
1
)
# augment segments (flip left-right)
i
=
result
>
0
# pixels to replace
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
img
[
i
]
=
result
[
i
]
# cv2.imwrite('debug.jpg', img) # debug
return
img
,
labels
,
segments
def
box_candidates
(
box1
,
box2
,
wh_thr
=
2
,
ar_thr
=
20
,
area_thr
=
0.1
,
eps
=
1e-16
):
# box1(4,n), box2(4,n)
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1
,
h1
=
box1
[
2
]
-
box1
[
0
],
box1
[
3
]
-
box1
[
1
]
...
...
@@ -919,24 +945,6 @@ def cutout(image, labels):
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
h
,
w
=
image
.
shape
[:
2
]
def
bbox_ioa
(
box1
,
box2
):
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
box2
=
box2
.
transpose
()
# Get the coordinates of bounding boxes
b1_x1
,
b1_y1
,
b1_x2
,
b1_y2
=
box1
[
0
],
box1
[
1
],
box1
[
2
],
box1
[
3
]
b2_x1
,
b2_y1
,
b2_x2
,
b2_y2
=
box2
[
0
],
box2
[
1
],
box2
[
2
],
box2
[
3
]
# Intersection area
inter_area
=
(
np
.
minimum
(
b1_x2
,
b2_x2
)
-
np
.
maximum
(
b1_x1
,
b2_x1
))
.
clip
(
0
)
*
\
(
np
.
minimum
(
b1_y2
,
b2_y2
)
-
np
.
maximum
(
b1_y1
,
b2_y1
))
.
clip
(
0
)
# box2 area
box2_area
=
(
b2_x2
-
b2_x1
)
*
(
b2_y2
-
b2_y1
)
+
1e-16
# Intersection over box2 area
return
inter_area
/
box2_area
# create random masks
scales
=
[
0.5
]
*
1
+
[
0.25
]
*
2
+
[
0.125
]
*
4
+
[
0.0625
]
*
8
+
[
0.03125
]
*
16
# image size fraction
for
s
in
scales
:
...
...
utils/metrics.py
浏览文件 @
c6c88dc6
# Model validation metrics
import
math
import
warnings
from
pathlib
import
Path
import
math
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
torch
...
...
@@ -253,6 +253,30 @@ def box_iou(box1, box2):
return
inter
/
(
area1
[:,
None
]
+
area2
-
inter
)
# iou = inter / (area1 + area2 - inter)
def
bbox_ioa
(
box1
,
box2
,
eps
=
1E-7
):
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
box1: np.array of shape(4)
box2: np.array of shape(nx4)
returns: np.array of shape(n)
"""
box2
=
box2
.
transpose
()
# Get the coordinates of bounding boxes
b1_x1
,
b1_y1
,
b1_x2
,
b1_y2
=
box1
[
0
],
box1
[
1
],
box1
[
2
],
box1
[
3
]
b2_x1
,
b2_y1
,
b2_x2
,
b2_y2
=
box2
[
0
],
box2
[
1
],
box2
[
2
],
box2
[
3
]
# Intersection area
inter_area
=
(
np
.
minimum
(
b1_x2
,
b2_x2
)
-
np
.
maximum
(
b1_x1
,
b2_x1
))
.
clip
(
0
)
*
\
(
np
.
minimum
(
b1_y2
,
b2_y2
)
-
np
.
maximum
(
b1_y1
,
b2_y1
))
.
clip
(
0
)
# box2 area
box2_area
=
(
b2_x2
-
b2_x1
)
*
(
b2_y2
-
b2_y1
)
+
eps
# Intersection over box2 area
return
inter_area
/
box2_area
def
wh_iou
(
wh1
,
wh2
):
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
wh1
=
wh1
[:,
None
]
# [N,1,2]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论