Unverified 提交 c8e52304 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

New `scale_segments()` function (#9570)

* Rename scale_coords to scale_boxes * add scale_segments
上级 d669a746
...@@ -42,7 +42,7 @@ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative ...@@ -42,7 +42,7 @@ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode from utils.torch_utils import select_device, smart_inference_mode
...@@ -148,7 +148,7 @@ def run( ...@@ -148,7 +148,7 @@ def run(
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det): if len(det):
# Rescale boxes from img_size to im0 size # Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results # Print results
for c in det[:, 5].unique(): for c in det[:, 5].unique():
......
...@@ -23,7 +23,7 @@ from torch.cuda import amp ...@@ -23,7 +23,7 @@ from torch.cuda import amp
from utils.dataloaders import exif_transpose, letterbox from utils.dataloaders import exif_transpose, letterbox
from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr, from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
increment_path, make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh, increment_path, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy, xyxy2xywh,
yaml_load) yaml_load)
from utils.plots import Annotator, colors, save_one_box from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import copy_attr, smart_inference_mode from utils.torch_utils import copy_attr, smart_inference_mode
...@@ -703,7 +703,7 @@ class AutoShape(nn.Module): ...@@ -703,7 +703,7 @@ class AutoShape(nn.Module):
self.multi_label, self.multi_label,
max_det=self.max_det) # NMS max_det=self.max_det) # NMS
for i in range(n): for i in range(n):
scale_coords(shape1, y[i][:, :4], shape0[i]) scale_boxes(shape1, y[i][:, :4], shape0[i])
return Detections(ims, y, files, dt, self.names, x.shape) return Detections(ims, y, files, dt, self.names, x.shape)
......
...@@ -42,7 +42,7 @@ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative ...@@ -42,7 +42,7 @@ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box from utils.plots import Annotator, colors, save_one_box
from utils.segment.general import process_mask from utils.segment.general import process_mask
from utils.torch_utils import select_device, smart_inference_mode from utils.torch_utils import select_device, smart_inference_mode
...@@ -152,7 +152,7 @@ def run( ...@@ -152,7 +152,7 @@ def run(
masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
# Rescale boxes from img_size to im0 size # Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results # Print results
for c in det[:, 5].unique(): for c in det[:, 5].unique():
......
...@@ -44,7 +44,7 @@ from models.yolo import SegmentationModel ...@@ -44,7 +44,7 @@ from models.yolo import SegmentationModel
from utils.callbacks import Callbacks from utils.callbacks import Callbacks
from utils.general import (LOGGER, NUM_THREADS, Profile, check_dataset, check_img_size, check_requirements, check_yaml, from utils.general import (LOGGER, NUM_THREADS, Profile, check_dataset, check_img_size, check_requirements, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_coords, xywh2xyxy, xyxy2xywh) scale_boxes, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, box_iou from utils.metrics import ConfusionMatrix, box_iou
from utils.plots import output_to_target, plot_val_study from utils.plots import output_to_target, plot_val_study
from utils.segment.dataloaders import create_dataloader from utils.segment.dataloaders import create_dataloader
...@@ -298,12 +298,12 @@ def run( ...@@ -298,12 +298,12 @@ def run(
if single_cls: if single_cls:
pred[:, 5] = 0 pred[:, 5] = 0
predn = pred.clone() predn = pred.clone()
scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
# Evaluate # Evaluate
if nl: if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct_bboxes = process_batch(predn, labelsn, iouv) correct_bboxes = process_batch(predn, labelsn, iouv)
correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True) correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
......
...@@ -725,7 +725,7 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): ...@@ -725,7 +725,7 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
if clip: if clip:
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
...@@ -769,7 +769,23 @@ def resample_segments(segments, n=1000): ...@@ -769,7 +769,23 @@ def resample_segments(segments, n=1000):
return segments return segments
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
# Rescale boxes (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
boxes[:, [0, 2]] -= pad[0] # x padding
boxes[:, [1, 3]] -= pad[1] # y padding
boxes[:, :4] /= gain
clip_boxes(boxes, img0_shape)
return boxes
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape # Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
...@@ -778,15 +794,15 @@ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): ...@@ -778,15 +794,15 @@ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
gain = ratio_pad[0][0] gain = ratio_pad[0][0]
pad = ratio_pad[1] pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding segments[:, 0] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding segments[:, 1] -= pad[1] # y padding
coords[:, :4] /= gain segments /= gain
clip_coords(coords, img0_shape) clip_segments(segments, img0_shape)
return coords return segments
def clip_coords(boxes, shape): def clip_boxes(boxes, shape):
# Clip bounding xyxy bounding boxes to image shape (height, width) # Clip boxes (xyxy) to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually if isinstance(boxes, torch.Tensor): # faster individually
boxes[:, 0].clamp_(0, shape[1]) # x1 boxes[:, 0].clamp_(0, shape[1]) # x1
boxes[:, 1].clamp_(0, shape[0]) # y1 boxes[:, 1].clamp_(0, shape[0]) # y1
...@@ -797,6 +813,16 @@ def clip_coords(boxes, shape): ...@@ -797,6 +813,16 @@ def clip_coords(boxes, shape):
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
def clip_segments(boxes, shape):
# Clip segments (xy1,xy2,...) to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[:, 0].clamp_(0, shape[1]) # x
boxes[:, 1].clamp_(0, shape[0]) # y
else: # np.array (faster grouped)
boxes[:, 0] = boxes[:, 0].clip(0, shape[1]) # x
boxes[:, 1] = boxes[:, 1].clip(0, shape[0]) # y
def non_max_suppression( def non_max_suppression(
prediction, prediction,
conf_thres=0.25, conf_thres=0.25,
...@@ -980,7 +1006,7 @@ def apply_classifier(x, model, img, im0): ...@@ -980,7 +1006,7 @@ def apply_classifier(x, model, img, im0):
d[:, :4] = xywh2xyxy(b).long() d[:, :4] = xywh2xyxy(b).long()
# Rescale boxes from img_size to im0 size # Rescale boxes from img_size to im0 size
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)
# Classes # Classes
pred_cls1 = d[:, 5].long() pred_cls1 = d[:, 5].long()
......
...@@ -28,7 +28,7 @@ import torchvision.transforms as T ...@@ -28,7 +28,7 @@ import torchvision.transforms as T
import yaml import yaml
from utils.dataloaders import img2label_paths from utils.dataloaders import img2label_paths
from utils.general import check_dataset, scale_coords, xywh2xyxy from utils.general import check_dataset, scale_boxes, xywh2xyxy
from utils.metrics import box_iou from utils.metrics import box_iou
COMET_PREFIX = "comet://" COMET_PREFIX = "comet://"
...@@ -293,14 +293,14 @@ class CometLogger: ...@@ -293,14 +293,14 @@ class CometLogger:
pred[:, 5] = 0 pred[:, 5] = 0
predn = pred.clone() predn = pred.clone()
scale_coords(image.shape[1:], predn[:, :4], shape[0], shape[1]) scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
labelsn = None labelsn = None
if nl: if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
scale_coords(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
return predn, labelsn return predn, labelsn
......
...@@ -20,7 +20,7 @@ import torch ...@@ -20,7 +20,7 @@ import torch
from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont
from utils import TryExcept, threaded from utils import TryExcept, threaded
from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_coords, increment_path, from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_boxes, increment_path,
is_ascii, xywh2xyxy, xyxy2xywh) is_ascii, xywh2xyxy, xyxy2xywh)
from utils.metrics import fitness from utils.metrics import fitness
from utils.segment.general import scale_image from utils.segment.general import scale_image
...@@ -565,7 +565,7 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, ...@@ -565,7 +565,7 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long() xyxy = xywh2xyxy(b).long()
clip_coords(xyxy, im.shape) clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
if save: if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory file.parent.mkdir(parents=True, exist_ok=True) # make directory
......
...@@ -40,7 +40,7 @@ from utils.callbacks import Callbacks ...@@ -40,7 +40,7 @@ from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader from utils.dataloaders import create_dataloader
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_yaml, from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_coords, xywh2xyxy, xyxy2xywh) scale_boxes, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
from utils.plots import output_to_target, plot_images, plot_val_study from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, smart_inference_mode from utils.torch_utils import select_device, smart_inference_mode
...@@ -244,12 +244,12 @@ def run( ...@@ -244,12 +244,12 @@ def run(
if single_cls: if single_cls:
pred[:, 5] = 0 pred[:, 5] = 0
predn = pred.clone() predn = pred.clone()
scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
# Evaluate # Evaluate
if nl: if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct = process_batch(predn, labelsn, iouv) correct = process_batch(predn, labelsn, iouv)
if plots: if plots:
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论