Unverified 提交 ca9babb8 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

Add ComputeLoss() class (#1950)

上级 f4a78e1b
...@@ -13,7 +13,6 @@ from models.experimental import attempt_load ...@@ -13,7 +13,6 @@ from models.experimental import attempt_load
from utils.datasets import create_dataloader from utils.datasets import create_dataloader
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \ from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.loss import compute_loss
from utils.metrics import ap_per_class, ConfusionMatrix from utils.metrics import ap_per_class, ConfusionMatrix
from utils.plots import plot_images, output_to_target, plot_study_txt from utils.plots import plot_images, output_to_target, plot_study_txt
from utils.torch_utils import select_device, time_synchronized from utils.torch_utils import select_device, time_synchronized
...@@ -36,7 +35,8 @@ def test(data, ...@@ -36,7 +35,8 @@ def test(data,
save_hybrid=False, # for hybrid auto-labelling save_hybrid=False, # for hybrid auto-labelling
save_conf=False, # save auto-label confidences save_conf=False, # save auto-label confidences
plots=True, plots=True,
log_imgs=0): # number of logged images log_imgs=0, # number of logged images
compute_loss=None):
# Initialize/load model and set device # Initialize/load model and set device
training = model is not None training = model is not None
...@@ -111,8 +111,8 @@ def test(data, ...@@ -111,8 +111,8 @@ def test(data,
t0 += time_synchronized() - t t0 += time_synchronized() - t
# Compute loss # Compute loss
if training: if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
# Run NMS # Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
......
...@@ -29,7 +29,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima ...@@ -29,7 +29,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
check_requirements, print_mutation, set_logging, one_cycle, colorstr check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download from utils.google_utils import attempt_download
from utils.loss import compute_loss from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
...@@ -227,6 +227,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): ...@@ -227,6 +227,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda) scaler = amp.GradScaler(enabled=cuda)
compute_loss = ComputeLoss(model) # init loss class
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
f'Using {dataloader.num_workers} dataloader workers\n' f'Using {dataloader.num_workers} dataloader workers\n'
f'Logging results to {save_dir}\n' f'Logging results to {save_dir}\n'
...@@ -286,7 +287,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): ...@@ -286,7 +287,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
# Forward # Forward
with amp.autocast(enabled=cuda): with amp.autocast(enabled=cuda):
pred = model(imgs) # forward pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
if rank != -1: if rank != -1:
loss *= opt.world_size # gradient averaged between devices in DDP mode loss *= opt.world_size # gradient averaged between devices in DDP mode
if opt.quad: if opt.quad:
...@@ -344,7 +345,8 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): ...@@ -344,7 +345,8 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
dataloader=testloader, dataloader=testloader,
save_dir=save_dir, save_dir=save_dir,
plots=plots and final_epoch, plots=plots and final_epoch,
log_imgs=opt.log_imgs if wandb else 0) log_imgs=opt.log_imgs if wandb else 0,
compute_loss=compute_loss)
# Write # Write
with open(results_file, 'a') as f: with open(results_file, 'a') as f:
......
差异被折叠。
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论