Unverified 提交 dbce1bc5 authored 作者: Ferdinand Loesch's avatar Ferdinand Loesch 提交者: GitHub

Objects365 Dataset (#2932)

* add object365 * ADD CONVERSION SCRIPT * fix transcript * Reformat and simplify * spelling * Update get_objects365.py Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
上级 33712d6d
lr0: 0.00258
lrf: 0.17
momentum: 0.779
weight_decay: 0.00058
warmup_epochs: 1.33
warmup_momentum: 0.86
warmup_bias_lr: 0.0711
box: 0.0539
cls: 0.299
cls_pw: 0.825
obj: 0.632
obj_pw: 1.0
iou_t: 0.2
anchor_t: 3.44
anchors: 3.2
fl_gamma: 0.0
hsv_h: 0.0188
hsv_s: 0.704
hsv_v: 0.36
degrees: 0.0
translate: 0.0902
scale: 0.491
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
# Objects365 dataset https://www.objects365.org/
# Train command: python train.py --data objects365.yaml
# Default dataset location is next to YOLOv5:
# /parent_folder
# /datasets/objects365
# /yolov5
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../datasets/objects365/images/train # 1.7 Million images
val: ../datasets/objects365/images/val # 5570 images
# number of classes
nc: 365
# class names
names: [ 'Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis' ]
...@@ -36,7 +36,7 @@ for val in annotation_files: ...@@ -36,7 +36,7 @@ for val in annotation_files:
img_name = a['images'][img_id]['name'] img_name = a['images'][img_id]['name']
img_label_name = img_name[:-3] + "txt" img_label_name = img_name[:-3] + "txt"
obj_class = annot['category_id'] cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox'] x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920. # offset and scale x_center = (x_center + width / 2) / 1920. # offset and scale
y_center = (y_center + height / 2) / 1200. # offset and scale y_center = (y_center + height / 2) / 1200. # offset and scale
...@@ -46,11 +46,10 @@ for val in annotation_files: ...@@ -46,11 +46,10 @@ for val in annotation_files:
img_dir = "./labels/" + a['seq_dirs'][a['images'][annot['image_id']]['sid']] img_dir = "./labels/" + a['seq_dirs'][a['images'][annot['image_id']]['sid']]
Path(img_dir).mkdir(parents=True, exist_ok=True) Path(img_dir).mkdir(parents=True, exist_ok=True)
if img_dir + "/" + img_label_name not in label_dict: if img_dir + "/" + img_label_name not in label_dict:
label_dict[img_dir + "/" + img_label_name] = [] label_dict[img_dir + "/" + img_label_name] = []
label_dict[img_dir + "/" + img_label_name].append(f"{obj_class} {x_center} {y_center} {width} {height}\n") label_dict[img_dir + "/" + img_label_name].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for filename in label_dict: for filename in label_dict:
with open(filename, "w") as file: with open(filename, "w") as file:
......
# Objects365 https://www.objects365.org labels JSON to YOLO script
# 1. Download Object 365 from the Object 365 website And unpack all images in datasets/object365/images
# 2. Place this file and zhiyuan_objv2_train.json file in datasets/objects365
# 3. Execute this file from datasets/object365 path
# /datasets
# /objects365
# /images
# /labels
from pycocotools.coco import COCO
coco = COCO("zhiyuan_objv2_train.json")
cats = coco.loadCats(coco.getCatIds())
nms = [cat["name"] for cat in cats]
print("COCO categories: \n{}\n".format(" ".join(nms)))
for categoryId, cat in enumerate(nms):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
print(cat)
# Create a subfolder in this directory called "labels". This is where the annotations will be saved in YOLO format
for im in coco.loadImgs(imgIds):
width, height = im["width"], im["height"]
path = im["file_name"].split("/")[-1] # image filename
try:
with open("labels/train/" + path.replace(".jpg", ".txt"), "a+") as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
x, y = x + w / 2, y + h / 2 # xy to center
file.write(f"{categoryId} {x / width:.5f} {y / height:.5f} {w / width:.5f} {h / height:.5f}\n")
except Exception as e:
print(e)
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论