Unverified 提交 de534e92 authored 作者: Glenn Jocher's avatar Glenn Jocher 提交者: GitHub

Fix 3 for Arial.ttf redownloads with hub inference (#4629)

Fix 3 for Arial.ttf redownloads with hub inference, follow-on to #4628.
上级 a4e8f78c
...@@ -48,7 +48,22 @@ class Colors: ...@@ -48,7 +48,22 @@ class Colors:
colors = Colors() # create instance for 'from utils.plots import colors' colors = Colors() # create instance for 'from utils.plots import colors'
def check_font(font='Arial.ttf', size=10):
# Return a PIL TrueType Font, downloading to ROOT dir if necessary
font = Path(font)
font = font if font.exists() else (ROOT / font.name)
try:
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
except Exception as e: # download if missing
url = "https://ultralytics.com/assets/" + font.name
print(f'Downloading {url} to {font}...')
torch.hub.download_url_to_file(url, str(font))
return ImageFont.truetype(str(font), size)
class Annotator: class Annotator:
check_font() # download TTF if necessary
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=True): def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=True):
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
...@@ -56,22 +71,11 @@ class Annotator: ...@@ -56,22 +71,11 @@ class Annotator:
if self.pil: # use PIL if self.pil: # use PIL
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im) self.draw = ImageDraw.Draw(self.im)
s = sum(self.im.size) / 2 # mean shape self.font = check_font(font, size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
f = font_size or max(round(s * 0.035), 12)
font = Path(font) # font handling
font = font if font.exists() else (ROOT / font.name)
try:
self.font = ImageFont.truetype(str(font) if font.exists() else font.name, size=f)
except Exception as e: # download if missing
url = "https://ultralytics.com/assets/" + font.name
print(f'Downloading {url} to {font}...')
torch.hub.download_url_to_file(url, str(font))
self.font = ImageFont.truetype(font, size=f)
self.fh = self.font.getsize('a')[1] - 3 # font height self.fh = self.font.getsize('a')[1] - 3 # font height
else: # use cv2 else: # use cv2
self.im = im self.im = im
s = sum(im.shape) / 2 # mean shape self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
self.lw = line_width or max(round(s * 0.003), 2) # line width
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
# Add one xyxy box to image with label # Add one xyxy box to image with label
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论