Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
Y
yolov5
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
图表
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
Administrator
yolov5
Commits
f8e11483
Unverified
提交
f8e11483
authored
7月 26, 2021
作者:
Glenn Jocher
提交者:
GitHub
7月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update dataset headers (#4162)
上级
8acb5734
隐藏空白字符变更
内嵌
并排
正在显示
9 个修改的文件
包含
57 行增加
和
48 行删除
+57
-48
Argoverse_HD.yaml
data/Argoverse_HD.yaml
+6
-5
GlobalWheat2020.yaml
data/GlobalWheat2020.yaml
+6
-5
Objects365.yaml
data/Objects365.yaml
+6
-5
SKU-110K.yaml
data/SKU-110K.yaml
+6
-5
VOC.yaml
data/VOC.yaml
+7
-6
VisDrone.yaml
data/VisDrone.yaml
+6
-5
coco.yaml
data/coco.yaml
+6
-5
coco128.yaml
data/coco128.yaml
+7
-6
xView.yaml
data/xView.yaml
+7
-6
没有找到文件。
data/Argoverse_HD.yaml
浏览文件 @
f8e11483
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
#
Train command
: python train.py --data Argoverse_HD.yaml
#
Default dataset location is next to YOLOv5:
#
/parent
#
/datasets/Argoverse
#
/yolov5
#
YOLOv5 🚀 example usage
: python train.py --data Argoverse_HD.yaml
#
parent
#
├── yolov5
#
└── datasets
#
└── Argoverse ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/GlobalWheat2020.yaml
浏览文件 @
f8e11483
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# Global Wheat 2020 dataset http://www.global-wheat.com/
#
Train command
: python train.py --data GlobalWheat2020.yaml
#
Default dataset location is next to YOLOv5:
#
/parent
#
/datasets/GlobalWheat2020
#
/yolov5
#
YOLOv5 🚀 example usage
: python train.py --data GlobalWheat2020.yaml
#
parent
#
├── yolov5
#
└── datasets
#
└── GlobalWheat2020 ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/Objects365.yaml
浏览文件 @
f8e11483
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# Objects365 dataset https://www.objects365.org/
#
Train command
: python train.py --data Objects365.yaml
#
Default dataset location is next to YOLOv5:
#
/parent
#
/datasets/Objects365
#
/yolov5
#
YOLOv5 🚀 example usage
: python train.py --data Objects365.yaml
#
parent
#
├── yolov5
#
└── datasets
#
└── Objects365 ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/SKU-110K.yaml
浏览文件 @
f8e11483
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
#
Train command
: python train.py --data SKU-110K.yaml
#
Default dataset location is next to YOLOv5:
#
/parent
#
/datasets/SKU-110K
#
/yolov5
#
YOLOv5 🚀 example usage
: python train.py --data SKU-110K.yaml
#
parent
#
├── yolov5
#
└── datasets
#
└── SKU-110K ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/VOC.yaml
浏览文件 @
f8e11483
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Train command: python train.py --data VOC.yaml
# Default dataset location is next to YOLOv5:
# /parent
# /datasets/VOC
# /yolov5
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC
# YOLOv5 🚀 example usage: python train.py --data VOC.yaml
# parent
# ├── yolov5
# └── datasets
# └── VOC ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/VisDrone.yaml
浏览文件 @
f8e11483
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
#
Train command
: python train.py --data VisDrone.yaml
#
Default dataset location is next to YOLOv5:
#
/parent
#
/datasets/VisDrone
#
/yolov5
#
YOLOv5 🚀 example usage
: python train.py --data VisDrone.yaml
#
parent
#
├── yolov5
#
└── datasets
#
└── VisDrone ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/coco.yaml
浏览文件 @
f8e11483
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# COCO 2017 dataset http://cocodataset.org
#
Train command
: python train.py --data coco.yaml
#
Default dataset location is next to YOLOv5:
#
/parent
#
/datasets/coco
#
/yolov5
#
YOLOv5 🚀 example usage
: python train.py --data coco.yaml
#
parent
#
├── yolov5
#
└── datasets
#
└── coco ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/coco128.yaml
浏览文件 @
f8e11483
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to YOLOv5:
# /parent
# /datasets/coco128
# /yolov5
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# YOLOv5 🚀 example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco128 ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
data/xView.yaml
浏览文件 @
f8e11483
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# xView 2018 dataset https://challenge.xviewdataset.org
# ----
> NOTE: DOWNLOAD DATA MANUALLY from URL above and unzip to /datasets/xView before running train command below
#
Train command
: python train.py --data xView.yaml
#
Default dataset location is next to YOLOv5:
#
/parent
#
/datasets/xView
#
/yolov5
# ----
---- DOWNLOAD DATA MANUALLY from URL above and unzip to 'datasets/xView' before running train command! --------
#
YOLOv5 🚀 example usage
: python train.py --data xView.yaml
#
parent
#
├── yolov5
#
└── datasets
#
└── xView ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论