1. 10 12月, 2020 1 次提交
  2. 09 12月, 2020 5 次提交
  3. 07 12月, 2020 1 次提交
  4. 06 12月, 2020 3 次提交
  5. 05 12月, 2020 1 次提交
  6. 04 12月, 2020 1 次提交
  7. 02 12月, 2020 3 次提交
  8. 01 12月, 2020 1 次提交
  9. 30 11月, 2020 2 次提交
  10. 29 11月, 2020 2 次提交
  11. 28 11月, 2020 1 次提交
  12. 27 11月, 2020 4 次提交
  13. 26 11月, 2020 5 次提交
    • Glenn Jocher's avatar
      Mosaic plots bug fix (#1526) · 2c3efa43
      Glenn Jocher 提交于
      2c3efa43
    • Glenn Jocher's avatar
      --image_weights bug fix (#1524) · 12499f1c
      Glenn Jocher 提交于
      12499f1c
    • Glenn Jocher's avatar
      --image_weights bug fix (#1524) · 9728e2b8
      Glenn Jocher 提交于
      9728e2b8
    • Glenn Jocher's avatar
      Cache bug fix (#1513) · e9a0ae6f
      Glenn Jocher 提交于
      * Caching bug fix #1508
      
      * np.zeros((0,5)) x2
      e9a0ae6f
    • yxNONG's avatar
      Add QFocalLoss() (#1482) · b3ceffb5
      yxNONG 提交于
      * Update loss.py
      
      implement the quality focal loss which is a more general case of focal loss
      more detail in https://arxiv.org/abs/2006.04388 
      
      In the obj loss (or the case cls loss with label smooth), the targets is no long barely be 0 or 1 (can be 0.7), in this case, the normal focal loss is not work accurately
      quality focal loss in behave the same as focal loss when the target is equal to 0 or 1, and work accurately when targets in (0, 1)
      
      example:
      
      targets:
      tensor([[0.6225, 0.0000, 0.0000],
              [0.9000, 0.0000, 0.0000],
              [1.0000, 0.0000, 0.0000]])
      ___________________________
      pred_prob:
      tensor([[0.6225, 0.2689, 0.1192],
              [0.7773, 0.5000, 0.2227],
              [0.8176, 0.8808, 0.1978]])
      ____________________________
      focal_loss
      tensor([[0.0937, 0.0328, 0.0039],
              [0.0166, 0.1838, 0.0199],
              [0.0039, 1.3186, 0.0145]])
      ______________
      qfocal_loss
      tensor([[7.5373e-08, 3.2768e-02, 3.9179e-03],
              [4.8601e-03, 1.8380e-01, 1.9857e-02],
              [3.9233e-03, 1.3186e+00, 1.4545e-02]])
       
      we can see that targets[0][0] = 0.6255 is almost the same as pred_prob[0][0] = 0.6225, 
      the targets[1][0] = 0.9 is greater then pred_prob[1][0] = 0.7773 by 0.1227
      however, the focal loss[0][0] = 0.0937 larger then focal loss[1][0] = 0.0166 (which against the purpose of focal loss)
      
      for the quality focal loss , it implement the case of targets not equal to 0 or 1
      
      * Update loss.py
      b3ceffb5
  14. 25 11月, 2020 2 次提交
  15. 24 11月, 2020 8 次提交