- 10 12月, 2020 1 次提交
-
-
由 Glenn Jocher 提交于
-
- 09 12月, 2020 5 次提交
-
-
由 Glenn Jocher 提交于
* Simplify autoshape() post-process * cleanup * cleanup
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
* Create codeql-analysis.yml * Update ci-testing.yml
-
- 07 12月, 2020 1 次提交
-
-
由 Glenn Jocher 提交于
-
- 06 12月, 2020 3 次提交
-
-
由 Glenn Jocher 提交于
* Pycocotools best.pt after COCO train * cleanup
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
- 05 12月, 2020 1 次提交
-
-
由 Glenn Jocher 提交于
-
- 04 12月, 2020 1 次提交
-
-
由 Glenn Jocher 提交于
-
- 02 12月, 2020 3 次提交
-
-
由 Glenn Jocher 提交于
* Update matplotlib tight_layout=True * udpate * udpate * update * png to ps * update * update
-
由 Glenn Jocher 提交于
-
由 SergioSanchezMontesUAM 提交于
-
- 01 12月, 2020 1 次提交
-
-
由 Hu Ye 提交于
fix bugs in plot_images
-
- 30 11月, 2020 2 次提交
-
-
由 Glenn Jocher 提交于
* Daemon thread plotting * remove process_batch * plot after print
-
由 Glenn Jocher 提交于
* FROM pytorch/pytorch:latest * FROM nvcr.io/nvidia/pytorch:20.10-py3
-
- 29 11月, 2020 2 次提交
-
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
- 28 11月, 2020 1 次提交
-
-
由 Glenn Jocher 提交于
-
- 27 11月, 2020 4 次提交
-
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
- 26 11月, 2020 5 次提交
-
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
* Caching bug fix #1508 * np.zeros((0,5)) x2
-
由 yxNONG 提交于
* Update loss.py implement the quality focal loss which is a more general case of focal loss more detail in https://arxiv.org/abs/2006.04388 In the obj loss (or the case cls loss with label smooth), the targets is no long barely be 0 or 1 (can be 0.7), in this case, the normal focal loss is not work accurately quality focal loss in behave the same as focal loss when the target is equal to 0 or 1, and work accurately when targets in (0, 1) example: targets: tensor([[0.6225, 0.0000, 0.0000], [0.9000, 0.0000, 0.0000], [1.0000, 0.0000, 0.0000]]) ___________________________ pred_prob: tensor([[0.6225, 0.2689, 0.1192], [0.7773, 0.5000, 0.2227], [0.8176, 0.8808, 0.1978]]) ____________________________ focal_loss tensor([[0.0937, 0.0328, 0.0039], [0.0166, 0.1838, 0.0199], [0.0039, 1.3186, 0.0145]]) ______________ qfocal_loss tensor([[7.5373e-08, 3.2768e-02, 3.9179e-03], [4.8601e-03, 1.8380e-01, 1.9857e-02], [3.9233e-03, 1.3186e+00, 1.4545e-02]]) we can see that targets[0][0] = 0.6255 is almost the same as pred_prob[0][0] = 0.6225, the targets[1][0] = 0.9 is greater then pred_prob[1][0] = 0.7773 by 0.1227 however, the focal loss[0][0] = 0.0937 larger then focal loss[1][0] = 0.0166 (which against the purpose of focal loss) for the quality focal loss , it implement the case of targets not equal to 0 or 1 * Update loss.py
-
- 25 11月, 2020 2 次提交
-
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
- 24 11月, 2020 8 次提交
-
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 igornishka 提交于
Co-authored-by:
Glenn Jocher <glenn.jocher@ultralytics.com>
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-
由 Glenn Jocher 提交于
-