1. 01 6月, 2022 2 次提交
  2. 31 5月, 2022 5 次提交
  3. 30 5月, 2022 2 次提交
  4. 29 5月, 2022 1 次提交
  5. 28 5月, 2022 3 次提交
  6. 27 5月, 2022 6 次提交
  7. 26 5月, 2022 1 次提交
  8. 25 5月, 2022 2 次提交
  9. 24 5月, 2022 7 次提交
  10. 23 5月, 2022 3 次提交
  11. 22 5月, 2022 4 次提交
  12. 20 5月, 2022 3 次提交
    • Glenn Jocher's avatar
      Add `DWConvTranspose2d()` module (#7881) · 5774a151
      Glenn Jocher 提交于
      * Add DWConvTranspose2d() module
      
      * [pre-commit.ci] auto fixes from pre-commit.com hooks
      
      for more information, see https://pre-commit.ci
      
      * Add DWConvTranspose2d() module
      
      * [pre-commit.ci] auto fixes from pre-commit.com hooks
      
      for more information, see https://pre-commit.ci
      
      * Fix
      
      * [pre-commit.ci] auto fixes from pre-commit.com hooks
      
      for more information, see https://pre-commit.ci
      
      * Fix
      
      * Fix
      Co-authored-by: 's avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
      5774a151
    • Glenn Jocher's avatar
    • Anton Lebedev's avatar
      Bug fix mAP0.5-0.95 (#6787) · 43569d53
      Anton Lebedev 提交于
      * Improve mAP0.5-0.95
      
      Two changes provided
      1. Added limit on the maximum number of detections for each image likewise pycocotools
      2. Rework process_batch function
      
      Changes #2 solved issue #4251
      I also independently encountered the problem described in issue #4251 that the values for the same thresholds do not match when changing the limits in the torch.linspace function.
      These changes solve this problem.
      
      Currently during validation yolov5x.pt model the following results were obtained:
      from yolov5 validation
                     Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 157/157 [01:07<00:00,  2.33it/s]
                       all       5000      36335      0.743      0.626      0.682      0.506
      from pycocotools
       Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.505
       Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.685
      
      These results are very close, although not completely pass the competition issue #2258.
      I think it's problem with false positive bboxes matched ignored criteria, but this is not actual for custom datasets and does not require an additional solution.
      
      * [pre-commit.ci] auto fixes from pre-commit.com hooks
      
      for more information, see https://pre-commit.ci
      
      * Remove line to retain pycocotools results
      
      * Update val.py
      
      * Update val.py
      
      * Remove to device op
      
      * Higher precision int conversion
      
      * Update val.py
      Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
      Co-authored-by: 's avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
      43569d53
  13. 19 5月, 2022 1 次提交