1. 31 8月, 2021 1 次提交
  2. 30 8月, 2021 8 次提交
  3. 29 8月, 2021 8 次提交
  4. 27 8月, 2021 3 次提交
  5. 26 8月, 2021 2 次提交
    • Glenn Jocher's avatar
      Auto-fix corrupt JPEGs (#4548) · 11f85e7e
      Glenn Jocher 提交于
      * Autofix corrupt JPEGs
      
      This PR automatically re-saves corrupt JPEGs and trains with the resaved images. WARNING: this will overwrite the existing corrupt JPEGs in a dataset and replace them with correct JPEGs, though the filesize may increase and the image contents may not be exactly the same due to lossy JPEG compression schemes. Results may vary by JPEG decoder and hardware.
      
      Current behavior is to exclude corrupt JPEGs from training with a warning to the user, but many users have been complaining about large parts of their dataset being excluded from training.
      
      * Clarify re-save reason
      11f85e7e
    • Glenn Jocher's avatar
      Fix for `python models/yolo.py --profile` (#4541) · 2da6444c
      Glenn Jocher 提交于
      Profiling fix copies input to Detect layer to circumvent inplace changes to the feature maps.
      2da6444c
  6. 23 8月, 2021 3 次提交
  7. 19 8月, 2021 1 次提交
  8. 18 8月, 2021 2 次提交
  9. 17 8月, 2021 1 次提交
    • Jiacong Fang's avatar
      Add TensorFlow and TFLite export (#1127) · 808bcad3
      Jiacong Fang 提交于
      * Add models/tf.py for TensorFlow and TFLite export
      
      * Set auto=False for int8 calibration
      
      * Update requirements.txt for TensorFlow and TFLite export
      
      * Read anchors directly from PyTorch weights
      
      * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export
      
      * Remove check_anchor_order, check_file, set_logging from import
      
      * Reformat code and optimize imports
      
      * Autodownload model and check cfg
      
      * update --source path, img-size to 320, single output
      
      * Adjust representative_dataset
      
      * Put representative dataset in tfl_int8 block
      
      * detect.py TF inference
      
      * weights to string
      
      * weights to string
      
      * cleanup tf.py
      
      * Add --dynamic-batch-size
      
      * Add xywh normalization to reduce calibration error
      
      * Update requirements.txt
      
      TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error
      
      * Fix imports
      
      Move C3 from models.experimental to models.common
      
      * Add models/tf.py for TensorFlow and TFLite export
      
      * Set auto=False for int8 calibration
      
      * Update requirements.txt for TensorFlow and TFLite export
      
      * Read anchors directly from PyTorch weights
      
      * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export
      
      * Remove check_anchor_order, check_file, set_logging from import
      
      * Reformat code and optimize imports
      
      * Autodownload model and check cfg
      
      * update --source path, img-size to 320, single output
      
      * Adjust representative_dataset
      
      * detect.py TF inference
      
      * Put representative dataset in tfl_int8 block
      
      * weights to string
      
      * weights to string
      
      * cleanup tf.py
      
      * Add --dynamic-batch-size
      
      * Add xywh normalization to reduce calibration error
      
      * Update requirements.txt
      
      TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error
      
      * Fix imports
      
      Move C3 from models.experimental to models.common
      
      * implement C3() and SiLU()
      
      * Fix reshape dim to support dynamic batching
      
      * Add epsilon argument in tf_BN, which is different between TF and PT
      
      * Set stride to None if not using PyTorch, and do not warmup without PyTorch
      
      * Add list support in check_img_size()
      
      * Add list input support in detect.py
      
      * sys.path.append('./') to run from yolov5/
      
      * Add int8 quantization support for TensorFlow 2.5
      
      * Add get_coco128.sh
      
      * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU)
      
      * Update requirements.txt
      
      * Replace torch.load() with attempt_load()
      
      * Update requirements.txt
      
      * Add --tf-raw-resize to set half_pixel_centers=False
      
      * Add --agnostic-nms for TF class-agnostic NMS
      
      * Cleanup after merge
      
      * Cleanup2 after merge
      
      * Cleanup3 after merge
      
      * Add tf.py docstring with credit and usage
      
      * pb saved_model and tflite use only one model in detect.py
      
      * Add use cases in docstring of tf.py
      
      * Remove redundant `stride` definition
      
      * Remove keras direct import
      
      * Fix `check_requirements(('tensorflow>=2.4.1',))`
      Co-authored-by: 's avatarGlenn Jocher <glenn.jocher@ultralytics.com>
      808bcad3
  10. 16 8月, 2021 3 次提交
  11. 15 8月, 2021 4 次提交
  12. 14 8月, 2021 4 次提交